|
|
A034188
|
|
Number of binary codes of length 3 with n words.
|
|
65
|
|
|
1, 1, 3, 3, 6, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219.
|
|
LINKS
|
Table of n, a(n) for n=0..98.
H. Fripertinger, Isometry Classes of Codes
|
|
FORMULA
|
a(n)=[C(2*n,n) mod 2]+{C[(n+1)^2,n+3] mod 2}+3*[C(n^2,n+2) mod 2]+3*{C[(n+11)^4,n+13] mod 2}+6*{C[(n+10)^4,n+12] mod 2}+3*{C[(n+9)^4,n+11] mod 2}+3*{C[(n+8)^4,n+10] mod 2}+{C[(n+7)^4,n+9] mod 2}+{C[(n+6)^4,n+8] mod 2} - Paolo P. Lava, Jan 07 2008
|
|
CROSSREFS
|
Cf. A034189, A034190, A034191, A034192, A034193, A034194, A034195, A034196, A034197.
A row of A039754.
Sequence in context: A236258 A105158 A020813 * A184849 A335870 A339496
Adjacent sequences: A034185 A034186 A034187 * A034189 A034190 A034191
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|