login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103932
Numerators of first difference of squares of harmonic numbers.
3
1, 5, 10, 47, 131, 71, 353, 1487, 6989, 1451, 82451, 42433, 1132133, 1158863, 236749, 4828073, 41781863, 42482563, 273253759, 277235737, 56204647, 18975625, 441730115, 670193263, 33874048171, 34224132367, 311048966203, 313970420453
OFFSET
1,2
COMMENTS
The corresponding denominators are given in A103933.
h(n+1) + h(n) = (n+1)*(h(n+1)^2 - h(n)^2), where h(n) is the n-th harmonic number. - Gary Detlefs, May 25 2012
LINKS
Wolfdieter Lang, Rationals.
FORMULA
a(n) = numerator(r(n)), with the rationals r(n) = H(n)^2 - H(n-1)^2 where H(n) = A001008(n)/A002805(n), n >= 1, H(0):=0.
G.f. for r(n): (log(1-x))^2 + dilog(1-x) where dilog(1-x) = polylog(2, x).
a(n) = numerator(h(n) + h(n-1)), where h(n) is the n-th harmonic number. - Gary Detlefs, May 25 2012
MAPLE
H:= Vector(51):
for i from 2 to 51 do H[i]:= H[i-1]+1/(i-1) od:
HS:= map(t -> t^2, H):
convert(map(numer, HS[2..-1]-HS[1..-2]), list); # Robert Israel, Sep 27 2023
MATHEMATICA
Array[ HarmonicNumber[#]^2&, 29, 0] // Differences // Numerator (* Jean-François Alcover, Jul 09 2013 *)
CROSSREFS
Sequence in context: A103971 A270085 A035406 * A034190 A216390 A305476
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Mar 24 2005
STATUS
approved