login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103929
Number of partitions of n into parts but with two kinds of parts of sizes 1 to 10.
3
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 751, 1162, 1762, 2647, 3918, 5748, 8331, 11981, 17056, 24108, 33787, 47043, 65019, 89336, 121954, 165585, 223542, 300295, 401331, 533937, 707057, 932404, 1224376, 1601571, 2086851, 2709449, 3505228
OFFSET
0,2
COMMENTS
See A103923 for other combinatorial interpretations of a(n).
In general, column m of A008951 is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
FORMULA
G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).
a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - Vaclav Kotesovec, Aug 28 2015
MATHEMATICA
nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@10], {n, 0, 37}] (* Robert Price, Jul 29 2020 *)
T[n_, 0] := PartitionsP[n];
T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
T[_, _] = 0;
a[n_] := T[n + 55, 10];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
CROSSREFS
Eleventh column (m=10) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
Cf. A000712 (all parts of two kinds).
Sequence in context: A103926 A103927 A103928 * A121597 A000712 A032442
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 24 2005
STATUS
approved