OFFSET
0,2
COMMENTS
See A103923 for other combinatorial interpretations of a(n).
In general, column m of A008951 is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - Vaclav Kotesovec, Aug 28 2015
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
FORMULA
G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).
a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.
a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - Vaclav Kotesovec, Aug 28 2015
MATHEMATICA
nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@10], {n, 0, 37}] (* Robert Price, Jul 29 2020 *)
T[n_, 0] := PartitionsP[n];
T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
T[_, _] = 0;
a[n_] := T[n + 55, 10];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 24 2005
STATUS
approved