Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 30 2021 15:38:27
%S 1,2,5,10,20,36,65,110,185,300,481,751,1162,1762,2647,3918,5748,8331,
%T 11981,17056,24108,33787,47043,65019,89336,121954,165585,223542,
%U 300295,401331,533937,707057,932404,1224376,1601571,2086851,2709449,3505228
%N Number of partitions of n into parts but with two kinds of parts of sizes 1 to 10.
%C See A103923 for other combinatorial interpretations of a(n).
%C In general, column m of A008951 is asymptotic to exp(Pi*sqrt(2*n/3)) * 6^(m/2) * n^((m-2)/2) / (4*sqrt(3) * m! * Pi^m), equivalently to 6^(m/2) * n^(m/2) / (m! * Pi^m) * p(n), where p(n) is the partition function A000041. - _Vaclav Kotesovec_, Aug 28 2015
%D H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958 (reprinted 1962), p. 91.
%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
%F G.f.: (product(1/(1-x^k), k=1..10)^2)*product(1/(1-x^j), j=11..infty).
%F a(n)=sum(A103924(n-10*j), j=0..floor(n/10)), n>=0.
%F a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^5 * n^4 / (4*sqrt(3) * 10! * Pi^10). - _Vaclav Kotesovec_, Aug 28 2015
%t nmax=60; CoefficientList[Series[Product[1/(1-x^k), {k, 1, 10}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 28 2015 *)
%t Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@10], {n,0,37}] (* _Robert Price_, Jul 29 2020 *)
%t T[n_, 0] := PartitionsP[n];
%t T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
%t T[_, _] = 0;
%t a[n_] := T[n + 55, 10];
%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 30 2021 *)
%Y Eleventh column (m=10) of Fine-Riordan triangle A008951 and of triangle A103923, i.e. the p_2(n, m) array of the Gupta et al. reference.
%Y Cf. A000712 (all parts of two kinds).
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Mar 24 2005