The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270085 Partial sums of the number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 65", based on the 5-celled von Neumann neighborhood. 1
 1, 5, 10, 46, 55, 151, 168, 356, 377, 689, 714, 1182, 1211, 1867, 1900, 2776, 2813, 3941, 3982, 5394, 5439, 7167, 7216, 9292, 9345, 11801, 11858, 14726, 14787, 18099, 18164, 21952, 22021, 26317, 26390, 31226, 31303, 36711, 36792, 42804, 42889, 49537, 49626 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Initialized with a single black (ON) cell at stage zero. REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. LINKS Robert Price, Table of n, a(n) for n = 0..128 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science FORMULA Conjectures from Colin Barker, Mar 11 2016: (Start) a(n) = 1/4*(-45+(-1)^n)+(35*n)/6-(-1+(-1)^n)*n^2+(2*n^3)/3 for n>3. a(n) = (4*n^3+35*n-66)/6 for n>3 and even. a(n) = (4*n^3+12*n^2+35*n-69)/6 for n>3 and odd. a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8. G.f.: (1+4*x+2*x^2+24*x^3-3*x^4+4*x^6+4*x^7-8*x^8+4*x^10) / ((1-x)^4*(1+x)^3). (End) MATHEMATICA CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]; code=65; stages=128; rule=IntegerDigits[code, 2, 10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}]; PrependTo[ca, a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}]; on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *) Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *) CROSSREFS Cf. A269782. Sequence in context: A083515 A343467 A103971 * A035406 A103932 A034190 Adjacent sequences:  A270082 A270083 A270084 * A270086 A270087 A270088 KEYWORD nonn,easy AUTHOR Robert Price, Mar 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 12:55 EDT 2021. Contains 343971 sequences. (Running on oeis4.)