The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270085 Partial sums of the number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 65", based on the 5-celled von Neumann neighborhood. 1
1, 5, 10, 46, 55, 151, 168, 356, 377, 689, 714, 1182, 1211, 1867, 1900, 2776, 2813, 3941, 3982, 5394, 5439, 7167, 7216, 9292, 9345, 11801, 11858, 14726, 14787, 18099, 18164, 21952, 22021, 26317, 26390, 31226, 31303, 36711, 36792, 42804, 42889, 49537, 49626 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
Conjectures from Colin Barker, Mar 11 2016: (Start)
a(n) = 1/4*(-45+(-1)^n)+(35*n)/6-(-1+(-1)^n)*n^2+(2*n^3)/3 for n>3.
a(n) = (4*n^3+35*n-66)/6 for n>3 and even.
a(n) = (4*n^3+12*n^2+35*n-69)/6 for n>3 and odd.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8.
G.f.: (1+4*x+2*x^2+24*x^3-3*x^4+4*x^6+4*x^7-8*x^8+4*x^10) / ((1-x)^4*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=65; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A269782.
Sequence in context: A083515 A343467 A103971 * A035406 A103932 A034190
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 10 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:25 EDT 2024. Contains 372882 sequences. (Running on oeis4.)