The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270085 Partial sums of the number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 65", based on the 5-celled von Neumann neighborhood. 1
 1, 5, 10, 46, 55, 151, 168, 356, 377, 689, 714, 1182, 1211, 1867, 1900, 2776, 2813, 3941, 3982, 5394, 5439, 7167, 7216, 9292, 9345, 11801, 11858, 14726, 14787, 18099, 18164, 21952, 22021, 26317, 26390, 31226, 31303, 36711, 36792, 42804, 42889, 49537, 49626 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Initialized with a single black (ON) cell at stage zero. REFERENCES S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. LINKS Robert Price, Table of n, a(n) for n = 0..128 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science Index entries for sequences related to cellular automata Index to 2D 5-Neighbor Cellular Automata Index to Elementary Cellular Automata FORMULA Conjectures from Colin Barker, Mar 11 2016: (Start) a(n) = 1/4*(-45+(-1)^n)+(35*n)/6-(-1+(-1)^n)*n^2+(2*n^3)/3 for n>3. a(n) = (4*n^3+35*n-66)/6 for n>3 and even. a(n) = (4*n^3+12*n^2+35*n-69)/6 for n>3 and odd. a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8. G.f.: (1+4*x+2*x^2+24*x^3-3*x^4+4*x^6+4*x^7-8*x^8+4*x^10) / ((1-x)^4*(1+x)^3). (End) MATHEMATICA CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]; code=65; stages=128; rule=IntegerDigits[code, 2, 10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}]; PrependTo[ca, a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}]; on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *) Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *) CROSSREFS Cf. A269782. Sequence in context: A083515 A343467 A103971 * A035406 A103932 A034190 Adjacent sequences: A270082 A270083 A270084 * A270086 A270087 A270088 KEYWORD nonn,easy AUTHOR Robert Price, Mar 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:25 EDT 2024. Contains 372882 sequences. (Running on oeis4.)