|
|
A270083
|
|
Near-miss circular primes: Primes p where all but one of the numbers obtained by cyclically permuting the digits of p are prime.
|
|
14
|
|
|
19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 103, 107, 127, 149, 157, 163, 173, 181, 191, 271, 277, 307, 313, 317, 331, 359, 367, 379, 397, 419, 479, 491, 571, 577, 593, 617, 631, 673, 701, 709, 727, 739, 757, 761, 787, 797, 811, 839, 877, 907, 911
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If a(512) exists, it is larger than 10^16. - Giovanni Resta, Apr 27 2017
If one of the digits is even or 5, the miss occurs when that digit is permuted to the ones place. Avoiding that simple obstruction, this sequence intersected with A091633 is 19, 173, 191, 313, 317, 331, 379, 397, 739, 797, 911, 937, 977, 1319, 1777, 1913, 1979, 1993, 3191, 3373, 3719, 3733, 3793, ... . Is this an infinite subsequence? - Danny Rorabaugh, May 15 2017
|
|
LINKS
|
|
|
MATHEMATICA
|
NearCircPrmsUpTo10powerK[k_]:= Union @ Flatten[ Table[ParallelMap[If[(Count[FromDigits /@ NestList[RotateLeft, IntegerDigits[#], IntegerLength[#]-1], _?PrimeQ] == IntegerLength[#]-1), #, Nothing] &, Select[FromDigits /@ Tuples[Range[0, 9], n], PrimeQ]], {n, k}], 1]; NearCircPrmsUpTo10powerK[7] (* Mikk Heidemaa, 26 Apr 2017 *)
|
|
PROG
|
(PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
eva(n) = subst(Pol(n), x, 10)
is(n) = my(r=rot(digits(n)), i=0); while(r!=digits(n), if(ispseudoprime(eva(r)), i++); r=rot(r)); if(ispseudoprime(eva(r)), i++); if(n==1 || n==11, return(0)); if(i==#Str(n)-1, 1, 0)
forprime(p=1, 1e3, if(is(p), print1(p, ", ")))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|