

A068654


Prime numbers such that every cyclic permutation (other than the number itself) is composite.


2



19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 109, 137, 139, 151, 167, 179, 193, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 281, 283, 293, 347, 349, 353, 383, 389, 401, 409, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 487, 499, 503, 509
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..54.


EXAMPLE

167 is a member as the two cyclic permutations other than the number itself i.e. 671 and 716 are composite.


MATHEMATICA

Select[Prime[Range[100]], Union[PrimeQ[FromDigits/@Table[ RotateRight[ IntegerDigits[#], i], {i, IntegerLength[#]1}]]]=={False}&] (* Harvey P. Dale, Dec 08 2012 *)


CROSSREFS

Cf. A003459, A068652, A068653.
Sequence in context: A270083 A286333 A076056 * A286415 A305835 A019384
Adjacent sequences: A068651 A068652 A068653 * A068655 A068656 A068657


KEYWORD

base,nonn


AUTHOR

Amarnath Murthy, Feb 28 2002


EXTENSIONS

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 21 2002


STATUS

approved



