login
A068654
Prime numbers such that every cyclic permutation (other than the number itself) is composite.
9
19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 109, 137, 139, 151, 167, 179, 193, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 281, 283, 293, 347, 349, 353, 383, 389, 401, 409, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 487, 499, 503, 509
OFFSET
1,1
EXAMPLE
167 is a member as the two cyclic permutations other than the number itself i.e. 671 and 716 are composite.
MATHEMATICA
Select[Prime[Range[100]], Union[PrimeQ[FromDigits/@Table[ RotateRight[ IntegerDigits[#], i], {i, IntegerLength[#]-1}]]]=={False}&] (* Harvey P. Dale, Dec 08 2012 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Feb 28 2002
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 21 2002
STATUS
approved