login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286415
Primes p where all the cyclic shifts of their digits to the right also produce primes except the last one before reaching p again.
3
19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 173, 271, 277, 313, 379, 397, 419, 479, 491, 571, 577, 593, 617, 631, 673, 811, 839, 877, 911, 977, 1777, 1913, 2131, 2311, 2377, 2399, 2713, 2791, 2939, 2971, 4177, 4339, 4919, 4993, 5119, 5791, 6133, 6737, 6997, 7193, 7333, 7919, 8111
OFFSET
1,1
COMMENTS
a(125)=937337931113, a(126) is larger than 10^16 (if it exists).
LINKS
EXAMPLE
2131 is a member as all the cyclic shifts of its digits to the right result in primes (1213, 3121) except the last one (1312) before reaching the original prime.
MATHEMATICA
cyclDigs[k_]:= FromDigits/@ NestList[RotateRight, IntegerDigits[k], IntegerLength[k]-1]; rgtSftNearCircPrmsInBtw[m_, n_]:= ParallelMap[ If[AllTrue[Most[cyclDigs[#]], PrimeQ] && Not@ PrimeQ[Last[cyclDigs[#]]], #, Nothing] &, Prime @ Range[PrimePi[m], PrimePi[n]]];
rgtSftNearCircPrmsInBtw[19, 10^7]
cspQ[n_]:=Module[{t=PrimeQ[FromDigits/@Table[RotateRight[IntegerDigits[ n], k], {k, IntegerLength[n]-1}]]}, Last[t]==False&&Union[Most[t]]=={True}]; Join[ {19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89}, Select[ Prime[ Range[ 26, 1100]], cspQ]] (* Harvey P. Dale, Oct 05 2020 *)
PROG
(Python)
from itertools import product
from sympy import isprime
A286415_list = []
for l in range(1, 15):
for d in '123456789':
for w in product('1379', repeat=l):
s = d+''.join(w)
n = int(s)
for i in range(l):
if not isprime(int(s)):
break
s = s[-1]+s[:-1]
else:
if not isprime(int(s)):
A286415_list.append(n) # Chai Wah Wu, May 21 2017
CROSSREFS
Cf. A270083 (subsequence of), A286333.
Sequence in context: A286333 A076056 A068654 * A305835 A019384 A088987
KEYWORD
nonn,base
AUTHOR
Mikk Heidemaa, May 08 2017
STATUS
approved