OFFSET
1,1
COMMENTS
From Bill Gosper, Jan 24 2003, in a posting to the Math Fun Mailing List: (Start)
Recall Sloane's old request for more terms of A003459 = (2 3 5 7 11 13 17 31 37 71 73 79 97 113 131 199 311 337 373 733 919 991 ...) and Richard C. Schroeppel's astonishing observation that the next term is 1111111111111111111. Absent Rich's analysis, trying to extend this sequence makes a great set of beginner's programming exercises. We may restrict the search to combinations of the four digits 1,3,7,9, only look at starting numbers with nondecreasing digits, generate only unique digit combinations, and only as needed. (We get the target sequence afterward by generating and merging the various permutations, and fudging the initial 2,3,5,7.)
To my amazement the (uncompiled, Macsyma) program printed 11,13,...,199,337, and after about a minute, 1111111111111111111!
And after a few more minutes, (10^23-1)/9! (End)
Boal and Bevis say that Johnson (1977) proves that if there is a term > 1000 with exactly two distinct digits then it must have more than nine billion digits. - N. J. A. Sloane, Jun 06 2015
Some authors require permutable or absolute primes to have at least two different digits. This produces the subsequence A129338. - M. F. Hasler, Mar 26 2008
See A039986 for a related problem with more sophisticated (PARI) code (iteration over only inequivalent digit permutations). - M. F. Hasler, Jul 10 2018
REFERENCES
Richard C. Schroeppel, personal communication.
Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 20-21.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977. [Related paper, but primarily concerned with A023107 and A103443. - N. J. A. Sloane, Jun 06 2015]
T. N. Bhargava and P. H. Doyle, On the existence of absolute primes, Math. Mag., 47 (1974), 233.
J. L. Boal and J. H. Bevis, Permutable primes. Math. Mag., 55 (No. 1, 1982), 38-41.
C. Caldwell, The prime glossary: Permutable Prime.
J. P. Delahaye, Persistent Primes, Illustrating Permutable, Circular, Right & Left Truncatable Primes, Pour La Science no 256.
James Grime and Brady Haran, Absolute Primes, YouTube Numberphile video, 2024.
A. W. Johnson, Absolute primes, Mathematics Magazine, 1977, vol. 50, pp. 100-103.
R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
W. Schneider, MATHEWS, Circular, Permutable, Truncatable and Deletable Primes.
A. Slinko, Absolute Primes Oct. 2000.
A. Slinko, Absolute Primes, Oct. 2000 [Cached copy, permission requested].
Wikipedia, Permutable prime.
FORMULA
Conjecture: for n >= 23, a(n) = A004022(n-21). - Max Alekseyev, Oct 08 2018
MATHEMATICA
f[n_]:=Module[{b=Permutations[IntegerDigits[n]], q=1}, Do[If[!PrimeQ[c=FromDigits[b[[m]]]], q=0; Break[]], {m, Length[b]}]; q]; Select[Range[1000], f[#]>0&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2011 *)
(* Linear complexity: can't reach R(19). See A258706. - Bill Gosper, Jan 06 2017 *)
PROG
(Haskell)
import Data.List (permutations)
a003459 n = a003459_list !! (n-1)
a003459_list = filter isAbsPrime a000040_list where
isAbsPrime = all (== 1) . map (a010051 . read) . permutations . show
-- Reinhard Zumkeller, Sep 15 2011
(PARI) for(n=1, oo, my(S=[], r=10^n\9); for(a=1, 9^(n>1), for(b=if(n>2, 1-a), 9-a, for(j=0, if(b, n-1), ispseudoprime(a*r+b*10^j)||next(2)); S=concat(S, vector(if(b, n, 1), k, a*r+10^(k-1)*b)))); apply(t->printf(t", "), Set(S))) \\ M. F. Hasler, Jun 26 2018
KEYWORD
nonn,base,nice,hard
AUTHOR
STATUS
approved