login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A016114
The smallest representative in a cycle of circular primes, where circular primes are numbers that remain prime under cyclic shifts of digits.
9
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111
OFFSET
1,1
COMMENTS
The next repunit that is prime has 317 digits, all ones. See A004023. - Harvey P. Dale, Mar 22 2012
Only the smallest member of the cyclic shift is listed. See A068652 for all members. - Chai Wah Wu, Nov 09 2015
It is highly likely that all circular primes not on the list above are repunits (see Caldwell link). - Ray Chandler, May 04 2017
Circular primes are A068652 (numbers that remain prime under cyclic shifts of digits). - Tanya Khovanova, Jul 29 2024
LINKS
Chris K. Caldwell, Circular Primes
Patrick De Geest, Circular Primes
James Grime and Brady Haran, Absolute Primes, YouTube Numberphile video, 2024.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Gianni Sarcone, Tourbillonnants nombres premiers, Tangente Web Site, No date.
MATHEMATICA
circularPrimeQ[p_] := Module[{d = IntegerDigits[p], ps}, ps = Table[FromDigits[d = RotateLeft[d]], {Length[d]}]; If[p > Min[ps], False, And @@ PrimeQ[ps]]]; Select[Prime[Range[100000]], circularPrimeQ] (* T. D. Noe, Mar 22 2012 *)
Union[Select[Union/@((FromDigits/@Table[RotateRight[IntegerDigits[#], n], {n, IntegerLength[ #]}])&/@Prime[Range[20000]]), AllTrue[#, PrimeQ]&]][[All, 1]] (* The program generates the first 19 terms of the sequence. *) (* Harvey P. Dale, Nov 14 2022 *)
CROSSREFS
Sequence includes all prime repunits (A004023). Cf. A003459, A293663.
For a sequence listing all the prime-yielding cyclic permutations see A068652.
Sequence in context: A117835 A120639 A141263 * A263499 A258706 A265408
KEYWORD
nonn,nice,base
EXTENSIONS
One more term from Lekraj Beedassy, Nov 07 2002
Name edited by Tanya Khovanova, Jul 29 2024
STATUS
approved