|
|
A068652
|
|
Numbers such that every cyclic permutation is a prime.
|
|
23
|
|
|
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
These numbers are sometimes called circular primes. - Tanya Khovanova, Jul 29 2024
|
|
LINKS
|
|
|
EXAMPLE
|
197 is a member as all the three cyclic permutations 197,971,719 are primes.
|
|
MATHEMATICA
|
fQ[p_] := Module[{b = IntegerDigits[p]}, And @@ Table[PrimeQ[FromDigits[b = RotateLeft[b]]], {Length[b] - 1}]]; Select[Prime[Range[100000]], fQ] (* T. D. Noe, Mar 22 2012 *)
ecppQ[n_]:=AllTrue[FromDigits/@Table[RotateLeft[IntegerDigits[n], i], {i, IntegerLength[n]}], PrimeQ]; Select[Range[400000], ecppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 25 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|