The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103971 Expansion of (1 - sqrt(1 - 4x - 16x^2))/(2x). 2
1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+4x)g(x(1+4x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)C(k)C(k+1,n-k).
More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1) = sum(C(k)*C(n-k),k=0..n) has the following g.f. f: f(z) = (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. - Richard Choulet, Dec 17 2009
LINKS
FORMULA
G.f.: (1-sqrt(1-4x(1+4x))/(2x);
a(n) = Sum_{k=0..n} 4^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(10 + 2*sqrt(5))*(2 + 2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n) * phi^(n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
MAPLE
n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)', 'p'=0..k):od:seq(a(k), k=0..n); # Richard Choulet, Dec 17 2009
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x), {x, 0, 30}], x] (* Harvey P. Dale, Apr 02 2012 *)
CROSSREFS
Sequence in context: A122173 A083515 A343467 * A270085 A035406 A103932
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 23 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:58 EDT 2024. Contains 372664 sequences. (Running on oeis4.)