The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122173 Expansion of -x * (x^5+x^4-15*x^3+19*x^2-8*x+1) / (x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1). 0
 1, -5, 10, -45, 110, -421, 1148, -4037, 11697, -39250, 117736, -384657, 1177235, -3787218, 11727187, -37389217, 116571621, -369712938, 1157315631, -3659226205, 11481436216, -36237006073, 113856243558, -358967583724, 1128781753801, -3556642214960, 11189229179710 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..27. Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31. Index entries for linear recurrences with constant coefficients, signature (3,6,-30,34,-12,1). FORMULA G.f.: -x*(x^5+x^4-15*x^3+19*x^2-8*x+1)/(x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1). [Colin Barker, Oct 19 2012] MATHEMATICA M = {{0, -1, -1, -1, -1, -1}, {-1, 0, -1, -1, -1, 0}, {-1, -1, 0, -1, 0, 0}, {-1, -1, -1, 1, 0, 0}, {-1, -1, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}] CROSSREFS Cf. A046854. Cf. A046854. Cf. A007700, A059455. Cf. A065941. Sequence in context: A316546 A187877 A328605 * A083515 A343467 A103971 Adjacent sequences: A122170 A122171 A122172 * A122174 A122175 A122176 KEYWORD sign,easy AUTHOR Gary W. Adamson and Roger L. Bagula, Oct 17 2006 EXTENSIONS Sequence edited by Joerg Arndt, Colin Barker, Bruno Berselli, Oct 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 03:05 EDT 2024. Contains 372957 sequences. (Running on oeis4.)