Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 18 2017 10:19:20
%S 1,-5,10,-45,110,-421,1148,-4037,11697,-39250,117736,-384657,1177235,
%T -3787218,11727187,-37389217,116571621,-369712938,1157315631,
%U -3659226205,11481436216,-36237006073,113856243558,-358967583724,1128781753801,-3556642214960,11189229179710
%N Expansion of -x * (x^5+x^4-15*x^3+19*x^2-8*x+1) / (x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1).
%H Peter Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden fields: a case for the heptagon</a>, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-30,34,-12,1).
%F G.f.: -x*(x^5+x^4-15*x^3+19*x^2-8*x+1)/(x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1). [_Colin Barker_, Oct 19 2012]
%t M = {{0, -1, -1, -1, -1, -1}, {-1, 0, -1, -1, -1, 0}, {-1, -1, 0, -1, 0, 0}, {-1, -1, -1, 1, 0, 0}, {-1, -1, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
%Y Cf. A046854. Cf. A046854. Cf. A007700, A059455. Cf. A065941.
%K sign,easy
%O 1,2
%A _Gary W. Adamson_ and _Roger L. Bagula_, Oct 17 2006
%E Sequence edited by _Joerg Arndt_, _Colin Barker_, _Bruno Berselli_, Oct 19 2012