login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328605
Expansion of (1 + 5*x - 2*x^2 - 15*x^3) / (1 - 12*x^2 + 25*x^4).
2
1, 5, 10, 45, 95, 415, 890, 3855, 8305, 35885, 77410, 334245, 721295, 3113815, 6720290, 29009655, 62611105, 270270485, 583326010, 2518004445, 5434634495, 23459291215, 50632463690, 218561383455, 471723701905, 2036254321085, 4394872830610, 18971017266645, 40945381419695
OFFSET
0,2
FORMULA
a(n) = 12*a(n-2) - 25*a(n-4) for n>3. - Colin Barker, Oct 21 2019
a(2*n)/a(2*n-1) ~ 2*a(2*n+1)/a(2*n) ~ 1 + sqrt(11).
MATHEMATICA
CoefficientList[Series[(1+5x-2x^2-15x^3)/(1-12x^2+25x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[ {0, 12, 0, -25}, {1, 5, 10, 45}, 30] (* Harvey P. Dale, Jul 02 2024 *)
PROG
(PARI) Vec((1 + 5*x - 2*x^2 - 15*x^3) / (1 - 12*x^2 + 25*x^4) + O(x^30)) \\ Colin Barker, Dec 13 2019
CROSSREFS
Sequence in context: A305246 A316546 A187877 * A122173 A083515 A343467
KEYWORD
nonn,less,easy
AUTHOR
Kyle MacLean Smith, Oct 20 2019
STATUS
approved