login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + 5*x - 2*x^2 - 15*x^3) / (1 - 12*x^2 + 25*x^4).
2

%I #28 Jul 02 2024 13:19:40

%S 1,5,10,45,95,415,890,3855,8305,35885,77410,334245,721295,3113815,

%T 6720290,29009655,62611105,270270485,583326010,2518004445,5434634495,

%U 23459291215,50632463690,218561383455,471723701905,2036254321085,4394872830610,18971017266645,40945381419695

%N Expansion of (1 + 5*x - 2*x^2 - 15*x^3) / (1 - 12*x^2 + 25*x^4).

%H Colin Barker, <a href="/A328605/b328605.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,12,0,-25).

%F a(n) = 12*a(n-2) - 25*a(n-4) for n>3. - _Colin Barker_, Oct 21 2019

%F a(2*n)/a(2*n-1) ~ 2*a(2*n+1)/a(2*n) ~ 1 + sqrt(11).

%t CoefficientList[Series[(1+5x-2x^2-15x^3)/(1-12x^2+25x^4),{x,0,30}],x] (* or *) LinearRecurrence[ {0,12,0,-25},{1,5,10,45},30] (* _Harvey P. Dale_, Jul 02 2024 *)

%o (PARI) Vec((1 + 5*x - 2*x^2 - 15*x^3) / (1 - 12*x^2 + 25*x^4) + O(x^30)) \\ _Colin Barker_, Dec 13 2019

%Y Cf. A328604, A328606.

%K nonn,less,easy

%O 0,2

%A _Kyle MacLean Smith_, Oct 20 2019