OFFSET
1,2
COMMENTS
Sequence with n>=5 appears to be quintisected with the quintisections multiples of A000079 (powers of two): a(5m) = 5,10,20,40... = 5*2^(m-1) for m>0; a(5m+1) = 6,12,24,48,... = 6*2^(m-1); likewise a(5m+2) = 7*2^(m-1); a(5m+3) = 8*2^(m-1); a(5m+4) = 9*2^(m-1). - Ralf Stephan, Nov 13 2010
From Antti Karttunen, Aug 01 2023: (Start)
Numbers k for which A005940(A005940(k)) = k, or equally, for which A005941(A005941(k)) = k, i.e., numbers that are either fixed points of permutation A005940/A005941, or elements of its 2-cycles.
If n is a term then also 2*n is present, and vice versa.
Question: Are 1, 3, 5, 7 and 9 the only odd terms of this sequence?
(End)
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..60.
FORMULA
Empirical g.f.: x*(1 +x +x^2 +x^3 +x^4)^2 / (1-2*x^5). - Colin Barker, Nov 18 2016
EXAMPLE
MATHEMATICA
f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^4}]; u = Flatten[ Table[ Position[t, n, 1, 1], {n, 10^4}]]; Do[ If[ u[[n]] == {}, u[[n]] = {0}], {n, 10^4}]; Flatten[ Position[ Take[t, 10^4] - Flatten[u], 0]]
PROG
(Python)
from math import prod
from itertools import accumulate, count, islice
from sympy import prime, primepi, factorint
from collections import Counter
def A103969_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:sum((1<<primepi(p)-1)<<i for i, p in enumerate(factorint(n, multiple=True)))+1==prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items()), count(max(startvalue, 1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 22 2005
EXTENSIONS
Definition corrected and example updated by R. J. Mathar, Mar 06 2010
STATUS
approved