The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292514 A number N is called a "rebel" number if there do not exist two integers a and b such that N = a + b with a > b > 0 and S(a) = S(b) where S(n) is the sum of the digits of the number n. 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 29, 38, 40, 49, 58, 60, 69, 78, 80, 89, 98, 100, 199, 399, 599, 799, 999, 2999, 4999, 6999, 8999, 19999, 39999, 59999, 79999, 99999, 299999, 499999, 699999, 899999, 1999999, 3999999, 5999999, 7999999, 9999999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A number which is not a "rebel" is called "docile". These definitions come from the French site Diophante, see link. There are an infinite number of odd "rebel" numbers. For instance, all the repdigits 9999999...99 with a string of (2k+1) times the digit 9; but there are only eighteen even "rebel" numbers: {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 38, 40, 58, 60, 78, 80, 98, 100}. LINKS Maurice Bauval, Dociles et Rebelles, Diophante, A 348, September 2014. EXAMPLE 14 is rebel because 14 = 13 + 1 = 12 + 2 = 11 + 3 = 10 + 4 = 9 + 5 = 8 + 6 and never S(a) = S(b) with these integers. MATHEMATICA Select[Range@ 100, Count[IntegerPartitions[#, {2}], _?(And[#1 > #2, Total@ IntegerDigits@ #1 == Total@ IntegerDigits@ #2] & @@ # &)] == 0 &]~Join~Union@ Flatten@ Table[Map[FromDigits[{#}~Join~ConstantArray[9, k]] &, Range[1, 9, 2] - Boole[OddQ@ k]], {k, 2, 6}] (* Michael De Vlieger, Sep 18 2017 *) PROG (PARI) isok(n) = {for (x=1, n\2, if ((x != (n-x)) && (sumdigits(x) == sumdigits(n-x)), return (0)); ); return (1); } \\ Michel Marcus, Sep 18 2017 CROSSREFS Cf. A292513 ("docile" numbers). Sequence in context: A130232 A103969 A271168 * A030141 A242367 A246077 Adjacent sequences:  A292511 A292512 A292513 * A292515 A292516 A292517 KEYWORD nonn,base AUTHOR Bernard Schott, Sep 18 2017 EXTENSIONS More terms from Giovanni Resta, Sep 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 5 22:32 EDT 2021. Contains 343578 sequences. (Running on oeis4.)