login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292511
Expansion of a q-series used by Ramanujan in his Lost Notebook.
2
1, -1, 3, -2, 3, -3, 4, -3, 6, -4, 3, -5, 6, -4, 9, -5, 3, -7, 7, -5, 9, -6, 6, -8, 9, -5, 9, -8, 6, -10, 6, -5, 15, -8, 9, -10, 7, -7, 12, -10, 3, -11, 15, -7, 15, -8, 6, -13, 12, -9, 12, -9, 9, -14, 12, -7, 15, -12, 6, -15, 13, -6, 21, -12, 12, -13, 6, -11
OFFSET
0,3
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, page 1, 1st equation with a=-1.
LINKS
FORMULA
a(n-1) = -(-1)^n * A260195(n) for all n in Z.
G.f.: 1 / (1+x)^2 + x * (1+x^2) / ((1+x) * (1+x^3)^2) + x^2 * (1+x^2) * (1+x^4) / ((1+x) * (1+x^3) * (1+x^5)^2) + ...
G.f. is the product of the g.f. of A015128 and the g.f. of A292526 divided by x. - Michael Somos, Sep 18 2017
EXAMPLE
G.f. = 1 - x + 3*x^2 - 2*x^3 + 3*x^4 - 3*x^5 + 4*x^6 - 3*x^7 + 6*x^8 - 4*x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sum[ x^k / (1 + x^(2 k + 1))^2 Product[ (1 + x^(2 i)) / (1 + x^(2 i - 1)), {i, Min[k, n - k]}], {k, 0, n}], {x, 0, n}];
a[ n_] := If[ n < 1, Boole[n==0], SeriesCoefficient[ QPochhammer[ x^2] / QPochhammer[ x]^2 Sum[ -(-1)^k x^k^2 (1 - x^(2 k - 1)) / (1 + x^(2 k - 1))^2, {k, Sqrt@n}] / x, {x, 0, n}]]; (* Michael Somos, Sep 18 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, n, x^k * prod(i=1, min(k, n-k), (1 + x^(2*i)) / (1 + x^(2*i-1)), 1 / (1 + x^(2*k+1) + x*O(x^(n-k)))^2)), n))};
(PARI) {a(n) = my(A); if( n<0, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A)^2 * sum(k=1, sqrtint(n), -(-1)^k * x^(k^2) * (1 - x^(2*k-1) + x * O(x^(n-k^2))) / (1 + x^(2*k-1))^2), n))}; /* Michael Somos, Sep 18 2017 */
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 17 2017
STATUS
approved