OFFSET
0,3
COMMENTS
In [Andrews and Berndt (2005)] take the derivative of equation (12.4.23) with respect to a, set a=-1, and multiply by q.
REFERENCES
G. E. Andrews, B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 278, Equ. (12.4.23).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
FORMULA
EXAMPLE
G.f. = x - 3*x^2 + 5*x^3 - 8*x^4 + 9*x^5 - 11*x^6 + 16*x^7 - 15*x^8 + 18*x^9 + ...
MAPLE
seq(coeff(series(add(-(-1)^k*x^(k^2)*(1-x^(2*k-1))/(1+x^(2*k-1))^2, k=1..n), x, n+1), x, n), n=0..60); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ -(-1)^k x^k^2 (1 - x^(2 k - 1)) / (1 + x^(2 k - 1))^2, {k, Sqrt@n}], {x, 0, n}]];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), -(-1)^k * x^(k^2) * (1 - x^(2*k-1) + x * O(x^(n-k^2))) / (1 + x^(2*k-1))^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2017
STATUS
approved