login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292526
Expansion of x^1 * (1-x^1) / (1+x^1)^2 - x^4 * (1-x^3) * (1+x^3)^2 + x^9 * (1-x^5) / (1+x^5)^2 - ... in powers of x.
2
0, 1, -3, 5, -8, 9, -11, 16, -15, 18, -24, 21, -23, 32, -30, 29, -41, 33, -35, 53, -39, 41, -56, 48, -54, 65, -51, 53, -72, 66, -64, 80, -63, 65, -102, 69, -72, 103, -75, 90, -104, 81, -83, 117, -111, 89, -120, 96, -95, 146, -99, 112, -143, 105, -126, 144
OFFSET
0,3
COMMENTS
In [Andrews and Berndt (2005)] take the derivative of equation (12.4.23) with respect to a, set a=-1, and multiply by q.
REFERENCES
G. E. Andrews, B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 278, Equ. (12.4.23).
LINKS
FORMULA
G.f.: Sum_{k>0} -(-1)^k * x^(k^2) * (1 - x^(2*k-1)) / (1 + x^(2*k-1))^2.
G.f. of A292511 is the product of the g.f. of A015128 and this g.f. divided by x.
EXAMPLE
G.f. = x - 3*x^2 + 5*x^3 - 8*x^4 + 9*x^5 - 11*x^6 + 16*x^7 - 15*x^8 + 18*x^9 + ...
MAPLE
seq(coeff(series(add(-(-1)^k*x^(k^2)*(1-x^(2*k-1))/(1+x^(2*k-1))^2, k=1..n), x, n+1), x, n), n=0..60); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ -(-1)^k x^k^2 (1 - x^(2 k - 1)) / (1 + x^(2 k - 1))^2, {k, Sqrt@n}], {x, 0, n}]];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), -(-1)^k * x^(k^2) * (1 - x^(2*k-1) + x * O(x^(n-k^2))) / (1 + x^(2*k-1))^2), n))};
CROSSREFS
Sequence in context: A190280 A261786 A124401 * A151747 A088597 A080640
KEYWORD
sign
AUTHOR
Michael Somos, Sep 18 2017
STATUS
approved