login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292524
Interpret the values of the Moebius function mu(k) for k = 1 to n as a balanced ternary number.
5
0, 1, 2, 5, 15, 44, 133, 398, 1194, 3582, 10747, 32240, 96720, 290159, 870478, 2611435, 7834305, 23502914, 70508742, 211526225, 634578675, 1903736026, 5711208079, 17133624236, 51400872708, 154202618124, 462607854373, 1387823563119, 4163470689357
OFFSET
0,3
COMMENTS
Balanced ternary is much like regular ternary, but with the crucial difference of using the digit -1 instead of the digit 2. Then some powers of 3 are added, others are subtracted.
If mu(n) = 0, then a(n) is a multiple of 3, specifically, it is thrice a(n - 1). Otherwise, a(n) is not a multiple of 3.
LINKS
FORMULA
a(n) = Sum_{k = 1..n} mu(k) 3^(n - k).
a(n) = 3 * a(n-1) + mu(n) for n > 0. - Alois P. Heinz, Oct 13 2017
a(n) ~ A238271 * 3^n. - Vaclav Kotesovec, May 19 2021
EXAMPLE
mu(1) = 1, so a(1) = 1 * 3^0 = 1.
mu(2) = -1, so a(2) = 1 * 3^1 + -1 * 3^0 = 3 - 1 = 2.
mu(3) = -1, so a(3) = 1 * 3^2 + -1 * 3^1 + -1 * 3^0 = 9 - 3 - 1 = 5.
mu(4) = 0, so a(4) = 1 * 3^3 + -1 * 3^2 + -1 * 3^1 + 0 * 3^0 = 27 - 9 - 3 + 0 = 15.
MAPLE
a:= proc(n) option remember; `if`(n=0, 0,
a(n-1)*3+numtheory[mobius](n))
end:
seq(a(n), n=0..33); # Alois P. Heinz, Oct 13 2017
MATHEMATICA
Table[Plus@@(3^Range[n - 1, 0, -1] MoebiusMu[Range[n]]), {n, 50}]
PROG
(PARI) a(n) = sum(k=1, n, moebius(k)*3^(n-k)); \\ Michel Marcus, Oct 01 2017
(PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, moebius(k)*x^k)/(1-3*x))) \\ Seiichi Manyama, May 19 2021
(PARI) a(n) = if(n==0, 0, 3*a(n-1)+moebius(n)); \\ Seiichi Manyama, May 19 2021
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Alonso del Arte, Sep 18 2017
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Oct 13 2017
STATUS
approved