login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084086
a(n) = Fibonacci(2*n+1) + 2*Fibonacci(2*n-1) - 2^n - [n = 0], where [b] is the Iverson bracket of b.
2
1, 2, 5, 15, 44, 125, 347, 948, 2561, 6863, 18284, 48501, 128243, 338276, 890681, 2341959, 6151580, 16145549, 42350603, 111037332, 291023537, 762557567, 1997697740, 5232632805, 13704394979, 35888940740, 93979204457, 246082227063, 644334585596, 1687055747453
OFFSET
0,2
FORMULA
Length of lists created by n substitutions, in Mathematica syntax:
k -> Range[ -1-Abs[k] + MoebiusMu[Abs[k]], k + 1 + MoebiusMu[Abs[k]], 2], starting with {-1}.
Equivalent to -10 -> {-10,-8}; -9 -> {-10,-8}; -8 -> {-9,-7}; -7 -> {-9,-7}; -5 -> {-7,-5}; -3 -> {-5,-3}; -1 -> {-1,1}; 1 -> {-1,1,3}; 3 -> {-5,-3,-1,1,3}.
G.f.: (1 - 3*x + 2*x^2 + 2*x^3)/(1 - 5*x + 7*x^2 - 2*x^3).
From G. C. Greubel, Oct 15 2022: (Start)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3), for n >= 4.
a(n) = 3*ChebyshevU(n, 3/2) - 5*ChebyshevU(n-1, 3/2) - 2^n - [n=0].
a(n) = Fibonacci(2*n+1) + 2*Fibonacci(2*n-1) - 2^n - [n=0]. (End)
EXAMPLE
Length of {-1}, {-1,1}, {-1,1,-1,1,3}, {-1,1,-1,1,3,-1,1,-1,1,3,-5,-3,-1,1,3} is 1, 2, 5, 15, respectively.
MAPLE
F := n -> combinat:-fibonacci(n):
a := n -> F(2*n+1) + 2*F(2*n-1) - 2^n - ifelse(n=0, 1, 0):
seq(a(n), n = 0..29); # Peter Luschny, Oct 16 2022
MATHEMATICA
Length/@Flatten/@NestList[ # /. k_Integer:>Range[ -1-Abs[k]+MoebiusMu[Abs[k]], k+1+MoebiusMu[Abs[k]], 2]&, {-1}, 8]
(* Second program *)
LinearRecurrence[{5, -7, 2}, {1, 2, 5, 15}, 40] (* G. C. Greubel, Oct 15 2022 *)
PROG
(Magma) [1] cat [Fibonacci(2*n+1) +2*Fibonacci(2*n-1) -2^n: n in [1..40]]; // G. C. Greubel, Oct 15 2022
(SageMath) [fibonacci(2*n+1) +2*fibonacci(2*n-1) -2^n -int(n==0) for n in range(41)] # G. C. Greubel, Oct 15 2022
CROSSREFS
Sequence in context: A304201 A215448 A094176 * A307259 A292524 A071742
KEYWORD
nonn,easy
AUTHOR
Wouter Meeussen, May 11 2003
EXTENSIONS
New name using a formula of G. C. Greubel by Peter Luschny, Oct 16 2022
STATUS
approved