|
|
A084088
|
|
Numbers k such that k == 2 (mod 3) and the exponent of the highest power of 2 dividing k is even.
|
|
4
|
|
|
5, 11, 17, 20, 23, 29, 35, 41, 44, 47, 53, 59, 65, 68, 71, 77, 80, 83, 89, 92, 95, 101, 107, 113, 116, 119, 125, 131, 137, 140, 143, 149, 155, 161, 164, 167, 173, 176, 179, 185, 188, 191, 197, 203, 209, 212, 215, 221, 227, 233, 236, 239, 245
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It seems that lim_{n->oo} a(n)/n = 9/2. [This is true. The asymptotic density of this sequence is 2/9. - Amiram Eldar, Jan 16 2022]
Positions of -1 in the expansion of Sum_{k>=0} x^2^k/(1+x^2^k+x^2^(k+1)) (A084091).
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[3 * Range[0, 81] + 2, EvenQ[IntegerExponent[#, 2]] &] (* Amiram Eldar, Jan 16 2022 *)
|
|
PROG
|
(PARI) for(n=0, 300, if(valuation(n, 2)%2==0&&n%3==2, print1(n", ")))
(Python)
from itertools import count, islice
def A084088_gen(): # generator of terms
return filter(lambda n:(n&-n).bit_length()&1, count(2, 3))
|
|
CROSSREFS
|
A352273 without the multiples of 9.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|