Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 19 2021 16:47:44
%S 0,1,2,5,15,44,133,398,1194,3582,10747,32240,96720,290159,870478,
%T 2611435,7834305,23502914,70508742,211526225,634578675,1903736026,
%U 5711208079,17133624236,51400872708,154202618124,462607854373,1387823563119,4163470689357
%N Interpret the values of the Moebius function mu(k) for k = 1 to n as a balanced ternary number.
%C Balanced ternary is much like regular ternary, but with the crucial difference of using the digit -1 instead of the digit 2. Then some powers of 3 are added, others are subtracted.
%C If mu(n) = 0, then a(n) is a multiple of 3, specifically, it is thrice a(n - 1). Otherwise, a(n) is not a multiple of 3.
%H Alois P. Heinz, <a href="/A292524/b292524.txt">Table of n, a(n) for n = 0..2097</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Balanced_ternary">Balanced ternary</a>
%F a(n) = Sum_{k = 1..n} mu(k) 3^(n - k).
%F a(n) = 3 * a(n-1) + mu(n) for n > 0. - _Alois P. Heinz_, Oct 13 2017
%F a(n) ~ A238271 * 3^n. - _Vaclav Kotesovec_, May 19 2021
%e mu(1) = 1, so a(1) = 1 * 3^0 = 1.
%e mu(2) = -1, so a(2) = 1 * 3^1 + -1 * 3^0 = 3 - 1 = 2.
%e mu(3) = -1, so a(3) = 1 * 3^2 + -1 * 3^1 + -1 * 3^0 = 9 - 3 - 1 = 5.
%e mu(4) = 0, so a(4) = 1 * 3^3 + -1 * 3^2 + -1 * 3^1 + 0 * 3^0 = 27 - 9 - 3 + 0 = 15.
%p a:= proc(n) option remember; `if`(n=0, 0,
%p a(n-1)*3+numtheory[mobius](n))
%p end:
%p seq(a(n), n=0..33); # _Alois P. Heinz_, Oct 13 2017
%t Table[Plus@@(3^Range[n - 1, 0, -1] MoebiusMu[Range[n]]), {n, 50}]
%o (PARI) a(n) = sum(k=1, n, moebius(k)*3^(n-k)); \\ _Michel Marcus_, Oct 01 2017
%o (PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, moebius(k)*x^k)/(1-3*x))) \\ _Seiichi Manyama_, May 19 2021
%o (PARI) a(n) = if(n==0, 0, 3*a(n-1)+moebius(n)); \\ _Seiichi Manyama_, May 19 2021
%Y Cf. A008683, A238271, A292779, A344432, A344433.
%K nonn,easy,base
%O 0,3
%A _Alonso del Arte_, Sep 18 2017
%E a(0)=0 prepended by _Alois P. Heinz_, Oct 13 2017