login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270089
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 73", based on the 5-celled von Neumann neighborhood.
1
1, 5, 10, 50, 50, 171, 171, 396, 396, 757, 757, 1286, 1286, 2015, 2015, 2976, 2976, 4201, 4201, 5722, 5722, 7571, 7571, 9780, 9780, 12381, 12381, 15406, 15406, 18887, 18887, 22856, 22856, 27345, 27345, 32386, 32386, 38011, 38011, 44252, 44252, 51141, 51141
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 11 2016: (Start)
a(n) = (-87-9*(-1)^n+(22-24*(-1)^n)*n-12*(-2+(-1)^n)*n^2+8*n^3)/12 for n>2.
a(n) = (4*n^3+6*n^2-n-48)/6 for n>2 and even.
a(n) = (4*n^3+18*n^2+23*n-39)/6 for n>2 and odd.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>9.
G.f.: (1+4*x+2*x^2+28*x^3-12*x^4+13*x^5+14*x^6-22*x^7-5*x^8+9*x^9) / ((1-x)^4*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=73; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270087.
Sequence in context: A034190 A216390 A305476 * A336582 A271275 A270100
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 10 2016
STATUS
approved