login
A344886
a(n) is the smallest triangular number that is a multiple of the product of the members of the n-th pair of twin primes.
0
15, 105, 2145, 11628, 94395, 370230, 1565565, 3265290, 13263825, 16689753, 44674878, 62434725, 129757995, 168095280, 190173753, 334822503, 411256860, 659371455, 784892010, 1176876870, 1822721253, 3871076055, 4333386060, 5670113295, 9245348190, 13148662530
OFFSET
1,1
COMMENTS
If we divide each a(n) by the two primes we get a sequence of the triangular numbers of (3 * A002820(n) - 1). If we take the differences between those triangular numbers we get A145061 + 1.
This is a subsequence of A011772, which is really the basic sequence here. - N. J. A. Sloane, Jul 06 2021
FORMULA
For n > 1 a(n) = 3*A001359(n)*A308344(n)*A006512(n-1).
a(n) = A000217(k) = k*(k+1)/2 where k = (A001359(n)-1)*A006512(n)/2. - Jon E. Schoenfield, Jun 01 2021
EXAMPLE
15 is the smallest triangular number that is a multiple of 3 and 5, so, a(1) = 15.
PROG
(PARI) a001359(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2};
a(n) = my(p=a001359(n), k = (p-1)*(p+2)/2); k*(k+1)/2; \\ Michel Marcus, Jun 10 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ali Sada, Jun 01 2021
EXTENSIONS
a(22)-a(26) from Jon E. Schoenfield, Jun 01 2021
STATUS
approved