login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226106
G.f.: exp( Sum_{n>=1} A068963(n)*x^n/n ) where A068963(n) = Sum_{d|n} phi(d^3).
3
1, 1, 3, 9, 20, 52, 105, 253, 536, 1142, 2421, 4999, 10278, 20686, 41512, 81984, 161029, 312681, 603070, 1153284, 2189331, 4129537, 7733317, 14399693, 26644337, 49034811, 89741600, 163411148, 296074694, 533909026, 958416113, 1712893825, 3048468607, 5403248469, 9539609984
OFFSET
0,3
COMMENTS
Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018
LINKS
FORMULA
a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 37*x^4/4 + 101*x^5/5 + 95*x^6/6 + 295*x^7/7 + 293*x^8/8 + 505*x^9/9 +...+ A068963(n)*x^n/n +...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, eulerphi(d^3))*x^m/m)+x*O(x^n)), n)}
for(n=0, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 26 2013
STATUS
approved