login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of orbits of length n under the full 15-shift (whose periodic points are counted by A001024).
2

%I #28 Jan 05 2025 19:51:36

%S 15,105,1120,12600,151872,1897840,24408480,320355000,4271484000,

%T 57664963104,786341441760,10812193870800,149707312950720,

%U 2085208989609360,29192926025339776,410525522071875000,5795654431511374080,82105104444274758000,1166756747396368729440,16626283650369421872480

%N Number of orbits of length n under the full 15-shift (whose periodic points are counted by A001024).

%C Number of Lyndon words (aperiodic necklaces) with n beads of 15 colors. - _Andrew Howroyd_, Dec 10 2017

%H Robert Israel, <a href="/A060218/b060218.txt">Table of n, a(n) for n = 1..851</a>

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H Yash Puri and Thomas Ward, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/39-5/puri.pdf">A dynamical property unique to the Lucas sequence</a>, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.

%H T. Ward, <a href="http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>

%F a(n) = (1/n)* Sum_{d|n} mu(d)*A001024(n/d).

%F G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 15*x^k))/k. - _Ilya Gutkovskiy_, May 19 2019

%e a(2)=105 since there are 225 points of period 2 in the full 15-shift and 15 fixed points, so there must be (225-15)/2 = 105 orbits of length 2.

%p f:= n -> 1/n*add(numtheory:-mobius(d)*15^(n/d), d = numtheory:-divisors(n)):

%p map(f, [$1..30]); # _Robert Israel_, Oct 28 2018

%t A060218[n_]:= DivisorSum[n, MoebiusMu[#]*15^(n/#) &]/n;

%t Table[A060218[n], {n, 40}] (* _G. C. Greubel_, Aug 01 2024 *)

%o (PARI) a001024(n) = 15^n;

%o a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ _Michel Marcus_, Sep 11 2017

%o (Magma)

%o A060218:= func< n | (&+[MoebiusMu(d)*15^Floor(n/d): d in Divisors(n)])/n >;

%o [A060218(n): n in [1..40]]; // _G. C. Greubel_, Aug 01 2024

%o (SageMath)

%o def A060218(n): return sum(moebius(k)*15^(n//k) for k in (1..n) if (k).divides(n))/n

%o [A060218(n) for n in range(1,41)] # _G. C. Greubel_, Aug 01 2024

%Y Column 15 of A074650.

%Y Cf. A001024.

%K easy,nonn,changed

%O 1,1

%A _Thomas Ward_, Mar 21 2001

%E More terms from _Michel Marcus_, Sep 11 2017