login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060221
Number of orbits of length n under the full 18-shift (whose periodic points are counted by A001027).
2
18, 153, 1938, 26163, 377910, 5667681, 87460002, 1377481950, 22039920504, 357046533675, 5842582734474, 96402612275775, 1601766528128550, 26772383354990049, 449776041098370870, 7589970692848393200, 128583032925805678350, 2185911559727674682148, 37275544492386193492506
OFFSET
1,1
COMMENTS
Number of Lyndon words (aperiodic necklaces) with n beads of 18 colors. - Andrew Howroyd, Dec 10 2017
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
FORMULA
a(n) = (1/n)* Sum_{d|n} mu(d)*A001027(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 18*x^k))/k. - Ilya Gutkovskiy, May 20 2019
EXAMPLE
a(2)=153 since there are 324 points of period 2 in the full 18-shift and 18 fixed points, so there must be (324-18)/2 = 153 orbits of length 2.
MATHEMATICA
A060221[n_]:= DivisorSum[n, (18)^(n/#)*MoebiusMu[#] &]/n;
Table[A060221[n], {n, 40}] (* G. C. Greubel, Sep 13 2024 *)
PROG
(PARI) a001027(n) = 18^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001027(n/d)); \\ Michel Marcus, Sep 11 2017
(Magma)
A060221:= func< n | (1/n)*(&+[MoebiusMu(d)*(18)^Floor(n/d): d in Divisors(n)]) >;
[A060221(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
(SageMath)
def A060221(n): return (1/n)*sum(moebius(k)*(18)^(n/k) for k in (1..n) if (k).divides(n))
[A060221(n) for n in range(1, 41)] # G. C. Greubel, Sep 13 2024
CROSSREFS
Column 18 of A074650.
Sequence in context: A047643 A010934 A022613 * A244876 A171741 A197239
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 21 2001
EXTENSIONS
More terms from Michel Marcus, Sep 11 2017
STATUS
approved