login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060224
Number of orbits of length n under the map whose periodic points are counted by A047863.
1
2, 2, 8, 39, 288, 3046, 47232, 1061100, 34385064, 1601137110, 106806380544, 10186152828755, 1386394018652160, 268976332493883474, 74301040560350828856, 29201332000320392849280, 16315436194909017151242240, 12952804290011844088808158188, 14603450579455204338154338779136
OFFSET
1,1
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
FORMULA
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A047863(n/d).
EXAMPLE
a(5)=288 since the 6th term of A047863 is 1442 and the 2nd term is 2, so there must be (1442-2)/5 = 288 orbits of length 5.
MATHEMATICA
A047863[n_]:= A047863[n]= Sum[Binomial[n, k]*2^(k*(n-k)), {k, 0, n}];
A060224[n_]:= DivisorSum[n, MoebiusMu[#]*A047863[n/#] &]/n;
Table[A060224[n], {n, 40}] (* G. C. Greubel, Nov 03 2024 *)
PROG
(PARI) a047863(n) = n!*polcoeff(sum(k=0, n, exp(2^k*x +x*O(x^n))*x^k/k!), n);
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a047863(n/d)); \\ Michel Marcus, Sep 11 2017
(Magma)
A047863:= func< n | (&+[Binomial(n, k)*2^(k*(n-k)): k in [0..n]]) >;
A060224:= func< n | (&+[MoebiusMu(d)*A047863(Floor(n/d)): d in Divisors(n)])/n >;
[A060224(n): n in [1..40]]; // G. C. Greubel, Nov 03 2024
(SageMath)
def A047863(n): return sum(binomial(n, k)*2^(k*(n-k)) for k in range(n+1))
def A060224(n): return sum(moebius(k)*A047863(n//k) for k in (1..n) if (k).divides(n))//n
[A060224(n) for n in range(1, 41)] # G. C. Greubel, Nov 03 2024
CROSSREFS
Sequence in context: A009543 A102647 A318869 * A232980 A212307 A111605
KEYWORD
nonn
AUTHOR
Thomas Ward, Mar 21 2001
EXTENSIONS
More terms from Michel Marcus, Sep 11 2017
STATUS
approved