login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232980 The Gauss factorial n_3!. 7
1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400, 246400, 246400, 3203200, 44844800, 44844800, 717516800, 12197785600, 12197785600, 231757926400, 4635158528000, 4635158528000, 101973487616000, 2345390215168000, 2345390215168000, 58634755379200000, 1524503639859200000, 1524503639859200000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.
LINKS
J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
MAPLE
Gf:=proc(N, n) local j, k; k:=1;
for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end;
f:=n->[seq(Gf(N, n), N=0..40)];
f(3);
PROG
(Magma) k:=3; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j, k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
CROSSREFS
The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.
Sequence in context: A102647 A318869 A060224 * A212307 A111605 A009544
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 22:05 EDT 2024. Contains 375910 sequences. (Running on oeis4.)