OFFSET
0,4
COMMENTS
Also known as Morita's 2-adic gamma function. - Harry Richman, Jul 26 2023
REFERENCES
Serge Lang, Cyclotomic Fields I and II, Springer-Verlag, 1990, p. 315.
LINKS
Kenny Lau, Table of n, a(n) for n = 0..806
Daniel Barsky, On Morita's p-adic Gamma function, Groupe de travail d'analyse ultramétrique, 5 (1977-1978), Talk no. 3, 6 p.
Wikipedia, P-adic gamma function.
FORMULA
MATHEMATICA
a[ n_] := If[ n < 0, 0, n! (-1)^n / (n - Mod[n, 2])!!]; (* Michael Somos, Jun 30 2018 *)
4[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - x) Exp[x^2/2], {x, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
PROG
(PARI) {a(n) = if( n<1, 1, -if( n%2, n * a(n-1), a(n-1)))};
(PARI) a(n)=(-1)^n*(n=bitor(n-1, 1))!/(n\2)!>>(n\2) \\ Charles R Greathouse IV, Oct 01 2012
(Sage)
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
def A055634(n): return (-1)^n*Gauss_factorial(n, 2)
[A055634(n) for n in (0..28)] # Peter Luschny, Oct 01 2012
(Magma) /* Based on Gauss factorial n_2!: */ k:=2; [IsZero(n) select 1 else (-1)^n*&*[j: j in [1..n] | IsOne(GCD(j, k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 06 2000
STATUS
approved