login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037223
Number of solutions to non-attacking rooks problem on n X n board that are invariant under 180-degree rotation.
15
1, 1, 2, 2, 8, 8, 48, 48, 384, 384, 3840, 3840, 46080, 46080, 645120, 645120, 10321920, 10321920, 185794560, 185794560, 3715891200, 3715891200, 81749606400, 81749606400, 1961990553600, 1961990553600, 51011754393600, 51011754393600, 1428329123020800, 1428329123020800
OFFSET
0,3
COMMENTS
This is just A000165 doubled up. Normally such sequences do not get their own entry in the OEIS. This is an exception. - N. J. A. Sloane, Sep 23 2006
Also the number of permutations of (1,2,3,...,n) for which the reverse of the inverse is the same as the inverse of the reverse. - Ian Duff, Mar 09 2007
Conjecture: a(n) = Product_{1<=i<=n and phi(i)<=floor(i/2)}i. - Enrique Pérez Herrero, May 31 2012. This conjecture is WRONG, counterexample is n=105. [Vaclav Kotesovec, Sep 07 2012]
REFERENCES
E. Lucas, Theorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.
LINKS
E. Lucas, Théorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
FORMULA
a(2n) = a(2n+1) = n!*2^n.
E.g.f.: 1 + x + (1 + x + x^2)*exp(x^2/2)*sqrt(Pi/2)*erf(x/sqrt(2)), where erf denotes the error function. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
For asymptotics see the Robinson paper.
E.g.f.: Q(0) where Q(k)= 1 + x/(2*k + 1 - x*(2*k+1)/(x+1/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 21 2012
E.g.f.: 1/(W(0)-x) where W(k)= x + 1/(1 + x/(2*k + 1 - x*(2*k+1)/W(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 22 2012
a(n) = Product_{i=1..floor(n/2)} 2*i. - Wesley Ivan Hurt, Oct 19 2014
D-finite with recurrence: a(n) +a(n-1) -n*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 20 2020
MAPLE
For Maple program see A000903.
# second Maple program:
a:= n-> (r-> r!*2^r)(iquo(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 23 2013
MATHEMATICA
f[n_]:=Times@@Select[Range[n], EulerPhi[#]<=Floor[#/2]&]; Table[f[n], {n, 1, 30}] (* Conjectured: Enrique Pérez Herrero, May 31 2012 *)(* This conjecture and also program is WRONG for n=105, Vaclav Kotesovec, Sep 07 2012 *)
a[n_] := (2*Floor[n/2])!!; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 23 2013, after N. J. A. Sloane's comment *)
PROG
(Magma) [Factorial((n div 2) -1)*2^((n div 2)-1): n in [2..35]]; // Vincenzo Librandi, Nov 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Edited by N. J. A. Sloane, Sep 23 2006
STATUS
approved