OFFSET
0,3
COMMENTS
This is just A000165 doubled up. Normally such sequences do not get their own entry in the OEIS. This is an exception. - N. J. A. Sloane, Sep 23 2006
Also the number of permutations of (1,2,3,...,n) for which the reverse of the inverse is the same as the inverse of the reverse. - Ian Duff, Mar 09 2007
Conjecture: a(n) = Product_{1<=i<=n and phi(i)<=floor(i/2)}i. - Enrique Pérez Herrero, May 31 2012. This conjecture is WRONG, counterexample is n=105. [Vaclav Kotesovec, Sep 07 2012]
REFERENCES
E. Lucas, Theorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
E. Lucas, Théorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
M. Szabo, Non-attacking Queens Problem Page
FORMULA
a(2n) = a(2n+1) = n!*2^n.
E.g.f.: 1 + x + (1 + x + x^2)*exp(x^2/2)*sqrt(Pi/2)*erf(x/sqrt(2)), where erf denotes the error function. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
For asymptotics see the Robinson paper.
E.g.f.: Q(0) where Q(k)= 1 + x/(2*k + 1 - x*(2*k+1)/(x+1/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 21 2012
E.g.f.: 1/(W(0)-x) where W(k)= x + 1/(1 + x/(2*k + 1 - x*(2*k+1)/W(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 22 2012
a(n) = Product_{i=1..floor(n/2)} 2*i. - Wesley Ivan Hurt, Oct 19 2014
D-finite with recurrence: a(n) +a(n-1) -n*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 20 2020
MAPLE
For Maple program see A000903.
# second Maple program:
a:= n-> (r-> r!*2^r)(iquo(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 23 2013
MATHEMATICA
f[n_]:=Times@@Select[Range[n], EulerPhi[#]<=Floor[#/2]&]; Table[f[n], {n, 1, 30}] (* Conjectured: Enrique Pérez Herrero, May 31 2012 *)(* This conjecture and also program is WRONG for n=105, Vaclav Kotesovec, Sep 07 2012 *)
a[n_] := (2*Floor[n/2])!!; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 23 2013, after N. J. A. Sloane's comment *)
PROG
(Magma) [Factorial((n div 2) -1)*2^((n div 2)-1): n in [2..35]]; // Vincenzo Librandi, Nov 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Miklos SZABO (mike(AT)ludens.elte.hu)
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Edited by N. J. A. Sloane, Sep 23 2006
STATUS
approved