login
A055633
Number of nested algorithms a(m,n) where m is the number of items in a contaminated group and n is the total number of unclassified items (0 <= m <= n) (values read by antidiagonals).
0
1, 1, 1, 2, 1, 10, 1, 2, 280, 2, 10, 235200, 4, 20, 280, 173859840000, 40, 2800, 235200, 98238542885683200000000, 100, 11200, 65856000, 173859840000, 32169371027674057560745102540800000000000000000, 28000, 1317120000
OFFSET
1,4
COMMENTS
The subsequence a(0,n) is given in A028580.
REFERENCES
D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, World Scientific, 2nd ed., 2000; p. 35.
FORMULA
a(0, 0)=1, a(0, 1)=1, a(0, n) = C(n+1)*product(a(0, i), i=1..n-1) for n >= 2 and a(m, n) = C(m)*product(a(0, n-i), i=1..m) for 1 <= m <= n. Here C(n) equals the Catalan number given by binomial(2n-2, n-1)/n.
EXAMPLE
1; 1; 1 2; 1 10; 1 2 280; 2 10 235200; ...
MAPLE
with(combinat): n := 10: A := array(0..n, 0..n): for i from 0 to n do for j from 0 to n do A[i, j] := 0: od:od: A[0, 0] := 1: A[0, 1] := 1: for j from 2 to 10 do A[0, j] := binomial(2*(j+1)-2, j+1 - 1)/(j+1)*product(A[0, a], a=1..j-1) od:
for c from 1 to 10 do for b from 1 to c do A[b, c] := binomial(2*(b)-2, b - 1)/(b)*product(A[0, c-x], x=1..b) od: od: for s from 0 to 10 do for n from s to 0 by -1 do if A[n, s-n]>0 then printf(`%d, `, A[n, s-n]) fi; od:od:
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
James A. Sellers, Jun 06 2000
STATUS
approved