|
|
A232981
|
|
The Gauss factorial n_5!.
|
|
2
|
|
|
1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576, 798336, 9580032, 124540416, 1743565824, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 41363226782215962624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..542
J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
|
|
FORMULA
|
From Robert Israel, Mar 06 2017: (Start)
a(n) = a(n-1) if 5 | n; otherwise n*a(n-1).
a(n) = n!/(5^floor(n/5)*floor(n/5)!). (End)
|
|
MAPLE
|
Gf:=proc(N, n) local j, k; k:=1;
for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end;
f:=n->[seq(Gf(N, n), N=0..40)];
f(5);
|
|
MATHEMATICA
|
Table[n!/(5^#*#!) &@ Floor[n/5], {n, 0, 25}] (* Michael De Vlieger, Mar 06 2017 *)
|
|
PROG
|
(Magma) k:=5; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j, k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
|
|
CROSSREFS
|
The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.
Sequence in context: A099732 A118381 A123145 * A304039 A246454 A079433
Adjacent sequences: A232978 A232979 A232980 * A232982 A232983 A232984
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Dec 08 2013
|
|
STATUS
|
approved
|
|
|
|