login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232984
The Gauss factorial n_10!.
1
1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189, 2079, 2079, 27027, 27027, 27027, 27027, 459459, 459459, 8729721, 8729721, 183324141, 183324141, 4216455243, 4216455243, 4216455243, 4216455243, 113844291561, 113844291561, 3301484455269, 3301484455269, 102346018113339, 102346018113339, 3377418597740187
OFFSET
0,4
COMMENTS
The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.
LINKS
J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
MAPLE
Gf:=proc(N, n) local j, k; k:=1;
for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end;
f:=n->[seq(Gf(N, n), N=0..40)];
f(10);
PROG
(Magma) k:=10; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j, k))]: n in [0..40]]; // Bruno Berselli, Dec 10 2013
CROSSREFS
The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.
Sequence in context: A286865 A095987 A278667 * A098535 A069239 A321080
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2013
STATUS
approved