login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232986 Numbers m == 1 (mod 4) such that the Gauss factorial ((m-1)/4, m)! == 1 (mod m). 1
5, 145, 205, 725, 1025, 1105, 1145, 1205, 1305, 1313, 1365, 1405, 1469, 1745, 1785, 1845, 1885, 1989, 2145, 2249, 2405, 2465, 2545, 2665, 2745, 2805, 3005, 3045, 3145, 3161, 3205, 3393, 3445, 3485, 3545, 3601, 3625, 3705, 3885, 3893, 3965 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Gauss factorial m_k! is defined to be Product_{1<=j<=m, gcd(j,k)=1} j.

LINKS

Table of n, a(n) for n=1..41.

J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.

J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.

EXAMPLE

m=145 is a term, because 36_145! = 32577412307818387955599294857216 == 1 (mod 145).

MAPLE

Gf:=proc(N, n) local j, k; k:=1;

for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end;

t1:=[];

for i from 1 to 1000 do

n:=4*i+1; if (Gf(i, n) mod n ) = 1 then t1:=[op(t1), n]; fi;

od:

t1;

CROSSREFS

Sequence in context: A320414 A168041 A081322 * A322954 A254711 A273920

Adjacent sequences: A232983 A232984 A232985 * A232987 A232988 A232989

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 14:38 EDT 2023. Contains 361599 sequences. (Running on oeis4.)