|
|
A232986
|
|
Numbers m == 1 (mod 4) such that the Gauss factorial ((m-1)/4, m)! == 1 (mod m).
|
|
1
|
|
|
5, 145, 205, 725, 1025, 1105, 1145, 1205, 1305, 1313, 1365, 1405, 1469, 1745, 1785, 1845, 1885, 1989, 2145, 2249, 2405, 2465, 2545, 2665, 2745, 2805, 3005, 3045, 3145, 3161, 3205, 3393, 3445, 3485, 3545, 3601, 3625, 3705, 3885, 3893, 3965
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The Gauss factorial m_k! is defined to be Product_{1<=j<=m, gcd(j,k)=1} j.
|
|
LINKS
|
Table of n, a(n) for n=1..41.
J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828.
J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013.
|
|
EXAMPLE
|
m=145 is a term, because 36_145! = 32577412307818387955599294857216 == 1 (mod 145).
|
|
MAPLE
|
Gf:=proc(N, n) local j, k; k:=1;
for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end;
t1:=[];
for i from 1 to 1000 do
n:=4*i+1; if (Gf(i, n) mod n ) = 1 then t1:=[op(t1), n]; fi;
od:
t1;
|
|
CROSSREFS
|
Sequence in context: A320414 A168041 A081322 * A322954 A254711 A273920
Adjacent sequences: A232983 A232984 A232985 * A232987 A232988 A232989
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Dec 08 2013
|
|
STATUS
|
approved
|
|
|
|