The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232986 Numbers m == 1 (mod 4) such that the Gauss factorial ((m-1)/4, m)! == 1 (mod m). 1
 5, 145, 205, 725, 1025, 1105, 1145, 1205, 1305, 1313, 1365, 1405, 1469, 1745, 1785, 1845, 1885, 1989, 2145, 2249, 2405, 2465, 2545, 2665, 2745, 2805, 3005, 3045, 3145, 3161, 3205, 3393, 3445, 3485, 3545, 3601, 3625, 3705, 3885, 3893, 3965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Gauss factorial m_k! is defined to be Product_{1<=j<=m, gcd(j,k)=1} j. LINKS J. B. Cosgrave and K. Dilcher, An introduction to Gauss factorials, Amer. Math. Monthly, 118 (2011), 810-828. J. B. Cosgrave and K. Dilcher, The Gauss-Wilson theorem for quarter-intervals, Acta Mathematica Hungarica, Sept. 2013. EXAMPLE m=145 is a term, because 36_145! = 32577412307818387955599294857216 == 1 (mod 145). MAPLE Gf:=proc(N, n) local j, k; k:=1; for j from 1 to N do if gcd(j, n)=1 then k:=j*k; fi; od; k; end; t1:=[]; for i from 1 to 1000 do n:=4*i+1; if (Gf(i, n) mod n ) = 1 then t1:=[op(t1), n]; fi; od: t1; CROSSREFS Sequence in context: A320414 A168041 A081322 * A322954 A254711 A273920 Adjacent sequences: A232983 A232984 A232985 * A232987 A232988 A232989 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 08 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 14:38 EDT 2023. Contains 361599 sequences. (Running on oeis4.)