Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 24 2022 02:06:29
%S 1,1,1,3,3,3,3,21,21,189,189,2079,2079,27027,27027,27027,27027,459459,
%T 459459,8729721,8729721,183324141,183324141,4216455243,4216455243,
%U 4216455243,4216455243,113844291561,113844291561,3301484455269,3301484455269,102346018113339,102346018113339,3377418597740187
%N The Gauss factorial n_10!.
%C The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.
%H J. B. Cosgrave and K. Dilcher, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.118.09.812">An introduction to Gauss factorials</a>, Amer. Math. Monthly, 118 (2011), 810-828.
%H J. B. Cosgrave and K. Dilcher, <a href="http://dx.doi.org/10.1007/s10474-013-0357-1">The Gauss-Wilson theorem for quarter-intervals</a>, Acta Mathematica Hungarica, Sept. 2013.
%p Gf:=proc(N,n) local j,k; k:=1;
%p for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
%p f:=n->[seq(Gf(N,n),N=0..40)];
%p f(10);
%o (Magma) k:=10; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..40]]; // _Bruno Berselli_, Dec 10 2013
%Y The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Dec 08 2013