OFFSET
1,2
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Robert Israel, Maple-assisted proof of formula
Index entries for linear recurrences with constant coefficients, signature (8,-17,32,-70,72,-24).
FORMULA
Empirical: a(n) = 8*a(n-1) -17*a(n-2) +32*a(n-3) -70*a(n-4) +72*a(n-5) -24*a(n-6).
Formula verified by Robert Israel, May 09 2018 (see link).
G.f.: x*(1 + 6*x - 2*x^2 - 44*x^3 + 52*x^4 - 16*x^5) / ((1 - x)*(1 - 7*x + 10*x^2 - 22*x^3 + 48*x^4 - 24*x^5)). - Colin Barker, Jun 02 2018
EXAMPLE
Some solutions for n=5:
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0
1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0
1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0
MAPLE
f:= gfun:-rectoproc({a(n) = 8*a(n-1) -17*a(n-2) +32*a(n-3) -70*a(n-4) +72*a(n-5) -24*a(n-6), seq(a(i)=[1, 14, 93, 494, 2801, 16062][i], i=1..6)},
a(n), remember):
map(f, [$1..25]); # Robert Israel, May 09 2018
MATHEMATICA
LinearRecurrence[{8, -17, 32, -70, 72, -24}, {1, 14, 93, 494, 2801, 16062}, 21] (* Jean-François Alcover, Aug 26 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 25 2011
STATUS
approved