login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370721
Positive integers k == 2 (mod 4) such that the parametric Pell-type equation x^2 - m*x*y + y^2 = m^2 + k has no integer solutions (x,y) for all integer m >= 1.
2
14, 94, 114, 118, 154, 158, 214, 238, 254, 294, 358, 414, 478, 574, 594, 598, 614, 654, 658, 694, 718, 758, 790, 814, 834, 862, 874, 878, 934, 958, 994, 1014, 1054, 1106, 1174, 1198, 1294, 1414, 1434, 1454, 1486, 1494, 1498, 1558, 1634, 1678, 1738, 1774, 1794, 1834, 1894, 1918, 1978
OFFSET
1,1
COMMENTS
For a positive integer k == 2 (mod 4), it suffice to check that the equation x^2-m*x*y+y^2 = m^2+k (*) has no integer solutions (x,y) for all integer m with 1 <= m <= k/2 (see references for the proof of some similar assertions). This condition can be verified by an algorithm similar to brute force search for the general Pell equation x^2-Dy^2 = N (see, for example, sect. 4.4.5 in: Andreescu T., Andrica D. Quadratic Diophantine Equations. New York: Springer, 2015).
Also, the equation (*) has no integer solutions (x,y) for all integer m >= 1 when k = 1 or k = 4. For any other positive integer k, the equation (*) has integer solutions (x,y) for infinitely many integers m >= 1.
REFERENCES
N. Osipov, A Pell-Type Diophantine Equation, Amer. Math. Monthly, 128 (2021), p. 858-860.
N. Osipov, A Pell-type Equation in Disguise, Amer. Math. Monthly, 129 (2022), p. 389-390.
MAPLE
check:=proc(k) local flag, y, m, yy, mm; flag:=0;
for y from 0 to evalf(2*sqrt((k+1)/3)+1) while flag=0 do
if issqr(-3*y^2+4*k+4)=true then flag:=1; mm:=1; yy:=y; fi; od;
for m from 3 to k/2 while flag=0 do
if m mod 4<>2 then for y from 0 to evalf(sqrt((m^2+k)/(m+2)))+1 while flag=0 do
if issqr((m^2-4)*y^2+4*(m^2+k))=true then flag:=1; mm:=m; yy:=y; fi; od; fi; od;
if flag=0 then return 0 else return [mm, yy]; fi; end proc:
for k from 1 to 2000 do if k mod 4=2 and check(k)=0 then print(k); fi; od:
PROG
(Pascal) (* see link *)
CROSSREFS
Cf. A371957 (for the equation x^2-m*x*y+y^2=-m^2-k).
Sequence in context: A202901 A224328 A241396 * A101383 A044265 A044646
KEYWORD
nonn
AUTHOR
Orlov Nikita and Nikolay Osipov, Mar 07 2024
EXTENSIONS
Edited by Nikolay Osipov, Jun 11 2024
STATUS
approved