Division gets rough: OEIS A187824 and A220890

Don Reble

2020 March 14

1 Introduction

From the OEIS[1]:

```
%I A187824
%S 3,4,5,6,3,4,4,5,3,6,4,4,3,5,5,4,3,6,5,5
%N a(n) is the largest m such that n is
   congruent to -1, 0 or 1 mod k for all
  k from 1 to m.
%K nonn, nice
%0 2,1
%A Kival Ngaokrajang, Dec 27 2012
%I A220890
%S -1,-1,-1,2,3,4,5,29,41,55,71,881,791,9360
%N a(n) = least m such that A187824(m) = n,
   or -1 if A187824 never takes the value n.
%Y Cf. A187824, A056697, A220891.
%K sign
%0 0,4
%A N. J. A. Sloane, Dec 30 2012
```

These sequences are about "rough division:" m roughly divides n iff m divides any of n-1, n, n+1. A187824(n)+1 is the least rough non-divisor of n. Obviously, 1, 2, and 3 roughly divide each integer, so a(n)+1>3.

1.1 Terminology

- Δ, Δ_i : a number in $\{-1, 0, 1\}$.
- \approx (roughly divides): $a \approx b$ iff $\exists k, \Delta : b = ka + \Delta$.
- srnd(n): the smallest rough non-divisor of n, A187824(n) + 1.

A220890(n-1) is the least inverse of srnd. Of course it is undefined at 1, 2, and 3; but there are other non-values:

 $\forall x : srnd(x) \notin \{1, 2, 3, 18, 20, 24, ...\}.$ (Proof later.)

2 Some theorems

Theorem 1 If a|b and $b \approx n$, then $a \approx n$. Proof:

$$b \approx n, \text{ so } \exists x, \Delta : n + \Delta = bx$$

$$a|b, \text{ so } \exists y : b = ya$$

$$n + \Delta = yax = yx \cdot a$$

$$a \approx n \blacksquare$$

Theorem 2 If $a \not\approx n$ and $b \not\approx n$ and $\gcd(a,b) > 2$, then $\operatorname{lcm}(a,b) \not\approx n$.

Proof:

Let
$$g = \gcd(a,b)$$
; $a' = a/g$; $b' = b/g$. $a \not \approx n$, so $\exists x, \Delta_1 : n + \Delta_1 = ax$ $b \not \approx n$, so $\exists y, \Delta_2 : n + \Delta_2 = by$ $\Delta_1 - \Delta_2 = ax - by$ $g|(ax - by)$ (because $g|a$ and $g|b$) $g|(\Delta_1 - \Delta_2)$ $0 = \Delta_1 - \Delta_2$ (because $|\Delta_1 - \Delta_2| \le 2 < g$) $0 = ax - by = a'x - b'y$ $b'|(a'x)$ $b'|x$ (because $\gcd(a',b') = 1$) $\exists z : x = zb'$ $n + \Delta_1 = azb' = a'gb'z = \operatorname{lcm}(a,b) \div z$ $\operatorname{lcm}(a,b) \not \approx n$

Theorem 3 If gcd(a, b) > 2, v|lcm(a, b), v > a, and v > b, then v is never a smallest rough non-divisor. Proof:

Let m = lcm(a, b). For each n:

- If $a \not\approx n$ and $b \not\approx n$, then theorem 2 applies, and $m \not\approx n$. For each suitable v, v | m, and so $v \not\approx n$ (theorem 1). v is not a rough non-divisor.
- Otherwise, a or b is a rough non-divisor, less than any suitable v, and so v is not the smallest rough non-divisor. •

Examples from M.F.Hasler's comments in A220890:

$$a = 9$$
, $b = 12$: $gcd = 3$, $lcm = 36$
If $9 \approx n$ and $12 \approx n$, then $36 \approx n$.

Therefore the factors of 36 greater than 12: 18, 36 are never srnd(x),

a = 12, b = 15: gcd = 3, lcm = 60 If $12 \not\approx n$ and $15 \not\approx n$, then $60 \not\approx n$, 20, 30, 60 are never srnd(x). a = 8, b = 12: gcd = 4, lcm = 24 If $8 \not\approx n$ and $12 \not\approx n$, then $24 \not\approx n$. 24 is never srnd(x).

Theorem 4 Let b > 3 be a non-divisor of m. Then there is an integer x such that $m \not\approx x$ but not $b \not\approx x$. Proof:

Let $g = \gcd(b, m)$. $\exists x, y : bx + my = g$ not b | m, so g < b $\exists \Delta : \Delta + g \not\in \{-1, 0, 1\} \mod b$ $(\Delta = \max(2 - g, -1) \text{ works.})$ Let $x = \Delta + my = \Delta + g - bx$. $m \not\approx x \text{ but not } b \not\approx x \blacksquare$

3 The range of srnd(x)

Theorem 3 yields many non-srnd values.

- For primes p, q, r with p < q < r: If pqr|n, let a = n/p, b = n/q. Then $r|\gcd(a,b) > 2$, b < a < n, $n|n = \operatorname{lcm}(a,b)$.
- For primes p, q with 3 :If <math>pq|n, let a = 3n/p, b = 3n/q. Then $3|\gcd(a, b) > 2$, b < a < n, $n|3n = \operatorname{lcm}(a, b)$.
- For primes p, q with q > 2 and $p \neq q$: If $pq^2|n$, let a = n/p, b = n/q. Then $q|\gcd(a,b) > 2$, a < n, b < n, $n|n = \operatorname{lcm}(a,b)$.
- For prime p > 3: If 4p|n, let a = 3n/4, b = 3n/p. Then $3|\gcd(a,b) > 2$, b < a < n, $n|3n = \operatorname{lcm}(a,b)$.
- If 24|n, let a = n/4, b = n/3. Then $4|\gcd(a,b) > 2$, a < b < n, $n|n = \operatorname{lcm}(a,b)$.

In each case, theorem 3 applies, and n is not a srnd value.

The non-srnd values include all multiples of

- pqr (three distinct primes),
- pq if 3 ,
- pq^2 if 2 < q,
- 2^2q if 3 < q,
- $2^3 \cdot 3$.

That leaves 1, p, 2p, 3p, p^k , and $2^2 \cdot 3 = 12$.

1, 2, 3, 12

1, 2 and 3 roughly divide anything, so are not srnd values. srnd(881) = 12, so 12 is a srnd value.

$$p^{k} > 3$$

For prime p, let $b=p^k>3$. (If p>3 then $k\geq 1$; else k>1.) Let $a_i=i$, for each $1\leq i< b$; let $m=\mathrm{lcm}(a_i)$. Then not b|m, and by theorem 4, there is an x such that $m\not\approx x$, and so all $a_i\not\approx x$, but not $b\not\approx x$. Therefore b is a srnd value.

2p

For odd prime p, let a_i be the values from 1 to 2p-1, except for p. Let $m=\operatorname{lcm}(a_i)$; then m is even and $\gcd(p,m)=1$. $\exists x,y:px+my=1; x \text{ is odd}$ Let n=px=1-my. for each $a_i, a_i \not\approx n$ $n=px\equiv p \mod 2p$ (because x is odd) $p\not\approx n$ but not $2p\not\approx n$

And so srnd(n) = 2p. Also, srnd(2) = 4; so each 2p is a snrd value.

3p

For prime p>3, let a_i be the values from 1 to 3p-1, except for p and 2p. Let $m=\text{lcm}(a_i)$; then 3|m and gcd(p,m)=1. $\exists x,y:px+my=1$; not 3|x Let n=2px-1=1-2my. for each $a_i,a_i \not\approx n;\ p\not\approx n$ and $2p\not\approx n$ $3p|3px=n+1+px,\ n\equiv -1-px \ \text{mod}\ 3p\not\equiv \Delta$ (because not 3|x) not $3p\not\approx n$ And so srnd(n)=3p. Also, srnd(4)=6,

srnd(41) = 9; so each 3p is a snrd value.

A220890

And so the factorizations of n+1 reveal the holes of A220890(n). If $n+1=p^k>3$, n+1=2p, n+1=3p, or n+1=12, the sequence has a value; otherwise -1.

References

[1] Neil Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org