|
|
A046224
|
|
Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
|
|
3
|
|
|
1, 2, 3, 11, 40, 147, 546, 2046, 7722, 29315, 111826, 428298, 1646008, 6344366, 24515700, 94942620, 368404110, 1431985635, 5574725970, 21732560850, 84828633120, 331488081210, 1296712152060, 5077282282020, 19897457591700, 78039200913102, 306302623291476
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..200
|
|
FORMULA
|
a(n) = Sum_{k=1..n-2} (2*k+1)*binomial(2*n-k-5,n-3), n>2; a(1)=1, a(2)=2. - Vladimir Kruchinin, Sep 27 2011
a(n) = (5*n-9)/(8*n-12)*binomial(2*n-2,n-1), n>2; a(1)=1, a(2)=2. - Eric Werley, Sep 16 2015
G.f.: (3/2)*x^2 + (2*x - 3*x^2)/(2*sqrt(1-4*x)). - G. C. Greubel, Sep 24 2015
|
|
EXAMPLE
|
1/1; <-- hence 1;
1/1 1/1;
1/1 1/2 1/1; <-- hence 2
1/1 3/2 3/2 1/1;
1/1 5/2 3/1 5/2 1/1; <-- hence 3
1/1 7/2 11/2 11/2 7/2 1/1;
1/1 9/2 9/1 11/1 9/1 9/2 1/1; <-- hence 11
1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1;
...
|
|
MATHEMATICA
|
Join[{1, 2}, Table[(5 n - 9)/(8 n - 12) Binomial[2 n - 2, n - 1], {n, 3, 40}]] (* Vincenzo Librandi, Sep 24 2015 *)
|
|
PROG
|
(Magma) [1, 2] cat [(5*n-9)/(8*n-12)*Binomial(2*n-2, n-1): n in [3..40]]; // Vincenzo Librandi, Sep 24 2015
(PARI) a(n) = if (n<3, n, (5*n-9)/(8*n-12)*binomial(2*n-2, n-1));
vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015
|
|
CROSSREFS
|
Cf. A046213.
Sequence in context: A007756 A000280 A249402 * A081173 A179266 A265779
Adjacent sequences: A046221 A046222 A046223 * A046225 A046226 A046227
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Mohammad K. Azarian
|
|
EXTENSIONS
|
More terms from James A. Sellers, Dec 13 1999
a(26)-a(27) from Vincenzo Librandi, Sep 24 2015
|
|
STATUS
|
approved
|
|
|
|