login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046224
Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
3
1, 2, 3, 11, 40, 147, 546, 2046, 7722, 29315, 111826, 428298, 1646008, 6344366, 24515700, 94942620, 368404110, 1431985635, 5574725970, 21732560850, 84828633120, 331488081210, 1296712152060, 5077282282020, 19897457591700, 78039200913102, 306302623291476
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n-2} (2*k+1)*binomial(2*n-k-5,n-3), n>2; a(1)=1, a(2)=2. - Vladimir Kruchinin, Sep 27 2011
a(n) = (5*n-9)/(8*n-12)*binomial(2*n-2,n-1), n>2; a(1)=1, a(2)=2. - Eric Werley, Sep 16 2015
G.f.: (3/2)*x^2 + (2*x - 3*x^2)/(2*sqrt(1-4*x)). - G. C. Greubel, Sep 24 2015
EXAMPLE
1/1; <-- hence 1;
1/1 1/1;
1/1 1/2 1/1; <-- hence 2
1/1 3/2 3/2 1/1;
1/1 5/2 3/1 5/2 1/1; <-- hence 3
1/1 7/2 11/2 11/2 7/2 1/1;
1/1 9/2 9/1 11/1 9/1 9/2 1/1; <-- hence 11
1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1;
...
MATHEMATICA
Join[{1, 2}, Table[(5 n - 9)/(8 n - 12) Binomial[2 n - 2, n - 1], {n, 3, 40}]] (* Vincenzo Librandi, Sep 24 2015 *)
PROG
(Magma) [1, 2] cat [(5*n-9)/(8*n-12)*Binomial(2*n-2, n-1): n in [3..40]]; // Vincenzo Librandi, Sep 24 2015
(PARI) a(n) = if (n<3, n, (5*n-9)/(8*n-12)*binomial(2*n-2, n-1));
vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015
CROSSREFS
Cf. A046213.
Sequence in context: A374312 A000280 A249402 * A081173 A179266 A265779
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Dec 13 1999
a(26)-a(27) from Vincenzo Librandi, Sep 24 2015
STATUS
approved