Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:44:56
%S 1,2,3,11,40,147,546,2046,7722,29315,111826,428298,1646008,6344366,
%T 24515700,94942620,368404110,1431985635,5574725970,21732560850,
%U 84828633120,331488081210,1296712152060,5077282282020,19897457591700,78039200913102,306302623291476
%N Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.
%H G. C. Greubel, <a href="/A046224/b046224.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) = Sum_{k=1..n-2} (2*k+1)*binomial(2*n-k-5,n-3), n>2; a(1)=1, a(2)=2. - _Vladimir Kruchinin_, Sep 27 2011
%F a(n) = (5*n-9)/(8*n-12)*binomial(2*n-2,n-1), n>2; a(1)=1, a(2)=2. - _Eric Werley_, Sep 16 2015
%F G.f.: (3/2)*x^2 + (2*x - 3*x^2)/(2*sqrt(1-4*x)). - _G. C. Greubel_, Sep 24 2015
%e 1/1; <-- hence 1;
%e 1/1 1/1;
%e 1/1 1/2 1/1; <-- hence 2
%e 1/1 3/2 3/2 1/1;
%e 1/1 5/2 3/1 5/2 1/1; <-- hence 3
%e 1/1 7/2 11/2 11/2 7/2 1/1;
%e 1/1 9/2 9/1 11/1 9/1 9/2 1/1; <-- hence 11
%e 1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1;
%e ...
%t Join[{1, 2}, Table[(5 n - 9)/(8 n - 12) Binomial[2 n - 2, n - 1], {n, 3, 40}]] (* _Vincenzo Librandi_, Sep 24 2015 *)
%o (Magma) [1,2] cat [(5*n-9)/(8*n-12)*Binomial(2*n-2,n-1): n in [3..40]]; // _Vincenzo Librandi_, Sep 24 2015
%o (PARI) a(n) = if (n<3, n, (5*n-9)/(8*n-12)*binomial(2*n-2,n-1));
%o vector(40, n, a(n)) \\ _Altug Alkan_, Oct 01 2015
%Y Cf. A046213.
%K nonn
%O 1,2
%A _Mohammad K. Azarian_
%E More terms from _James A. Sellers_, Dec 13 1999
%E a(26)-a(27) from _Vincenzo Librandi_, Sep 24 2015