login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222119 Number k yielding the smallest prime of the form (k+1)^p - k^p, where p = prime(n). 4
1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, 402, 3, 44, 10, 82, 20, 95, 4, 108, 349, 127, 303, 37, 3, 162 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The smallest k generating a prime of the form (k+1)^p - k^p ( A121620) for the prime A000040)(n). For the primes p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, ... (A000043), k = 1 and Mersenne primes 2^p - 1 (A000668) are obtained. For p = 11, 23, 29, ..., the smallest primes of the form (k+1)^p - k^p are respectively 313968931 (for k = 5), 777809294098524691 (for k = 5 also),  68629840493971 (for k = 2), ..., so a(5) = 5, a(9) = 5, a(10) = 2, ...

LINKS

Table of n, a(n) for n=1..77.

FORMULA

a(n) = A103794(n) - 1. - Ray Chandler, Feb 26 2017

MAPLE

A222119 := proc(n)

        p := ithprime(n) ;

        for k from 1 do

                if isprime((k+1)^p-k^p) then

                        return k;

                end if;

        end do:

end proc: # R. J. Mathar, Feb 10 2013

MATHEMATICA

Table[p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; k, {n, 80}] (* T. D. Noe, Feb 12 2013 *)

CROSSREFS

Cf. A103794, A222120 (number of digits in the primes).

Sequence in context: A250131 A100615 A293897 * A102280 A035316 A293718

Adjacent sequences:  A222116 A222117 A222118 * A222120 A222121 A222122

KEYWORD

nonn

AUTHOR

Vladimir Pletser, Feb 07 2013

EXTENSIONS

More terms from Ray Chandler, Feb 27 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)