login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222119
Number k yielding the smallest prime of the form (k+1)^p - k^p, where p = prime(n).
4
1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, 402, 3, 44, 10, 82, 20, 95, 4, 108, 349, 127, 303, 37, 3, 162
OFFSET
1,5
COMMENTS
The smallest k generating a prime of the form (k+1)^p - k^p (A121620) for the prime A000040(n). For the primes p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, ... (A000043), k = 1 and Mersenne primes 2^p - 1 (A000668) are obtained. For p = 11, 23, 29, ..., the smallest primes of the form (k+1)^p - k^p are respectively 313968931 (for k = 5), 777809294098524691 (for k = 5 also), 68629840493971 (for k = 2), ..., so a(5) = 5, a(9) = 5, a(10) = 2, ...
LINKS
FORMULA
a(n) = A103794(n) - 1. - Ray Chandler, Feb 26 2017
MAPLE
A222119 := proc(n)
p := ithprime(n) ;
for k from 1 do
if isprime((k+1)^p-k^p) then
return k;
end if;
end do:
end proc: # R. J. Mathar, Feb 10 2013
MATHEMATICA
Table[p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; k, {n, 80}] (* T. D. Noe, Feb 12 2013 *)
PROG
(PARI) f(p) = {my(k=1); while(ispseudoprime((k+1)^p-k^p)==0, k++); k; }
lista(nn) = forprime(p=2, nn, print1(f(p), ", ")); \\ Jinyuan Wang, Feb 03 2020
CROSSREFS
Cf. A103794, A222120 (number of digits in the primes).
Sequence in context: A293897 A334988 A334987 * A351086 A102280 A370239
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Feb 07 2013
EXTENSIONS
More terms from Ray Chandler, Feb 27 2017
STATUS
approved