login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121620
Smallest prime of the form k^p - (k-1)^p, where p = prime(n).
8
3, 7, 31, 127, 313968931, 8191, 131071, 524287, 777809294098524691, 68629840493971, 2147483647, 114867606414015793728780533209145917205659365404867510184121, 44487435359130133495783012898708551, 1136791005963704961126617632861
OFFSET
1,1
COMMENTS
All Mersenne primes of form 2^p-1 = {3, 7, 31, 127, 8191,...} belong to a(n). Mersenne prime A000668(n) = a(k) when prime(k) = A000043(n). Last digit is always 1 for Nexus numbers of form n^p - (n-1)^p with p = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101,...} = A004144(n) Pythagorean primes: primes of form 4n+1.
LINKS
Vladimir Pletser and T. D. Noe, Table of n, a(n) for n = 1..80 (first 46 terms from Vladimir Pletser)
MATHEMATICA
t = {}; n = 0; While[n++; p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; q < 10^100, AppendTo[t, q]]; t (* T. D. Noe, Feb 12 2013 *)
spf[p_]:=Module[{k=2}, While[CompositeQ[k^p-(k-1)^p], k++]; k^p-(k-1)^p]; Table[spf[p], {p, Prime[ Range[20]]}] (* Harvey P. Dale, Apr 01 2024 *)
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 10 2006
STATUS
approved