OFFSET
1,1
COMMENTS
All Mersenne primes of form 2^p-1 = {3, 7, 31, 127, 8191,...} belong to a(n). Mersenne prime A000668(n) = a(k) when prime(k) = A000043(n). Last digit is always 1 for Nexus numbers of form n^p - (n-1)^p with p = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101,...} = A004144(n) Pythagorean primes: primes of form 4n+1.
LINKS
Vladimir Pletser and T. D. Noe, Table of n, a(n) for n = 1..80 (first 46 terms from Vladimir Pletser)
MATHEMATICA
t = {}; n = 0; While[n++; p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; q < 10^100, AppendTo[t, q]]; t (* T. D. Noe, Feb 12 2013 *)
spf[p_]:=Module[{k=2}, While[CompositeQ[k^p-(k-1)^p], k++]; k^p-(k-1)^p]; Table[spf[p], {p, Prime[ Range[20]]}] (* Harvey P. Dale, Apr 01 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 10 2006
STATUS
approved