Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 01 2024 11:30:17
%S 3,7,31,127,313968931,8191,131071,524287,777809294098524691,
%T 68629840493971,2147483647,
%U 114867606414015793728780533209145917205659365404867510184121,44487435359130133495783012898708551,1136791005963704961126617632861
%N Smallest prime of the form k^p - (k-1)^p, where p = prime(n).
%C All Mersenne primes of form 2^p-1 = {3, 7, 31, 127, 8191,...} belong to a(n). Mersenne prime A000668(n) = a(k) when prime(k) = A000043(n). Last digit is always 1 for Nexus numbers of form n^p - (n-1)^p with p = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101,...} = A004144(n) Pythagorean primes: primes of form 4n+1.
%H Vladimir Pletser and T. D. Noe, <a href="/A121620/b121620.txt">Table of n, a(n) for n = 1..80</a> (first 46 terms from Vladimir Pletser)
%t t = {}; n = 0; While[n++; p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; q < 10^100, AppendTo[t, q]]; t (* _T. D. Noe_, Feb 12 2013 *)
%t spf[p_]:=Module[{k=2},While[CompositeQ[k^p-(k-1)^p],k++];k^p-(k-1)^p]; Table[spf[p],{p,Prime[ Range[20]]}] (* _Harvey P. Dale_, Apr 01 2024 *)
%Y Cf. A121616, A121617, A121618, A121619, A022521, A022523, A004144, A000043, A000668.
%K nonn
%O 1,1
%A _Alexander Adamchuk_, Aug 10 2006