login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).
8

%I #39 May 18 2023 17:30:07

%S 1,-1,5,-1,1,1,-5,-1,7,3,-15,-5,7601,691,-91,-35,3617,3617,-745739,

%T -43867,3317609,1222277,-5981591,-854513,5436374093,1181820455,

%U -213827575,-76977927,213745149261,23749461029,-249859397004145,-8615841276005,238988952277727,84802531453387

%N Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).

%C With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - _Peter Luschny_, Jan 23 2023

%D F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

%H Robert Israel, <a href="/A100615/b100615.txt">Table of n, a(n) for n = 0..575</a>

%H Madeline Beals-Reid, <a href="https://journals.calstate.edu/pump/article/view/3549">A Quadratic Relation in the Bernoulli Numbers</a>, The Pump Journal of Undergraduate Research, 6 (2023), 29-39.

%F E.g.f.: (x/(exp(x)-1))^2. - _Vladeta Jovovic_, Feb 27 2006

%F a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - _Vladimir Kruchinin_, Jun 02 2015

%F a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - _Fabián Pereyra_, Mar 02 2020

%F a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - _Peter Luschny_, May 18 2023

%e 1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.

%p S:= series((x/(exp(x)-1))^2, x, 41):

%p seq(numer(coeff(S,x,j)*j!), j=0..40); # _Robert Israel_, Jun 02 2015

%p # Second program:

%p a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:

%p seq(a(n), n = 0..33); # _Peter Luschny_, May 18 2023

%t Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* _Arkadiusz Wesolowski_, Oct 22 2012 *)

%t Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0, 33}] (* _Peter Luschny_, May 18 2023 *)

%o (Maxima) a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* _Vladimir Kruchinin_, Jun 02 2015 */

%o (PARI) a(n) = numerator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ _Michel Marcus_, Mar 03 2020

%Y Cf. A001898, A027641, A027642, A100616, A359738.

%K sign,frac

%O 0,3

%A _N. J. A. Sloane_, Dec 03 2004