|
|
A243180
|
|
Numbers of the form 8x^2+xy-8y^2.
|
|
3
|
|
|
0, 1, 4, 8, 9, 16, 22, 25, 26, 32, 34, 36, 44, 46, 49, 52, 58, 61, 62, 64, 67, 68, 72, 81, 88, 92, 100, 104, 113, 116, 118, 121, 124, 128, 136, 143, 144, 146, 157, 158, 169, 176, 178, 184, 187, 193, 196, 197, 198, 200, 208, 221, 225, 227, 232, 234, 236, 241, 242, 244, 248, 253, 256, 257, 268, 272, 274, 278, 286, 288, 289, 292, 299, 306, 316, 319, 324, 338, 341
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Discriminant 257.
32*a(n) has the form z^2 - 257*y^2, where z = 16*x+y. [Bruno Berselli, Jun 20 2014]
|
|
LINKS
|
|
|
MATHEMATICA
|
maxTerm = 400; m0 = 10; dm = 10; Clear[f]; f[m_] := f[m] = Table[8*x^2 + x*y - 8*y^2 , {x, -m, m}, {y, -m, m}] // Flatten // Union // Select[#, 0 <= # <= maxTerm&]&; f[m0]; f[m = m0]; While[f[m] != f[m - dm], m = m + dm]; f[m] (* Jean-François Alcover, Jun 04 2014 *)
|
|
PROG
|
(Sage) # uses[binaryQF]
# The function binaryQF is defined in the link 'Binary Quadratic Forms'.
Q = binaryQF([8, 1, -8])
print([0]+Q.represented_positives(341)) # Peter Luschny, Oct 26 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|