login
A280387
Composite numbers n such that sum of proper divisors of n divides sum of proper divisors of n^n.
0
4, 8, 9, 16, 21, 25, 27, 32, 36, 45, 49, 64, 81, 87, 91, 99, 121, 125, 128, 144, 169, 196, 217, 243, 256, 289, 325, 343, 361, 400, 417, 481, 512, 529, 559, 625, 685, 697, 703, 721, 729, 745, 749, 775, 801, 841, 925, 931, 961, 1024, 1156, 1157, 1261, 1331
OFFSET
1,1
COMMENTS
Terms are 2^2, 2^3, 3^2, 2^4, 3*7, 5^2, 3^3, 2^5, 2^2*3^2, 3^2*5, 7^2, 2^6, 3^4, 3*29, 7*13, 3^2*11, 11^2, 5^3, ...
Terms that are not Duffinian numbers are 45, 87, 91, 99, 196, 703, 745, 775, 801, 931, ...
EXAMPLE
Composite number 21 is a term because (sigma(21) - 21) = 11 divides (sigma(21^21) - 21^21) = 4381940263463668467705506011
MATHEMATICA
Select[Range[10^3], And[CompositeQ@ #, Divisible @@ Map[DivisorSigma[1, #] - # &, {#^#, #}]] &] (* Michael De Vlieger, Jan 02 2017 *)
PROG
(PARI) is(n) = !isprime(n) && (sigma(n^n)-n^n)%(sigma(n)-n)==0;
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Altug Alkan, Jan 01 2017
EXTENSIONS
More terms from Amiram Eldar, Feb 19 2019
STATUS
approved