login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243181
Numbers of the form 4x^2+9xy-11y^2.
2
0, 2, 4, 8, 11, 13, 16, 17, 18, 22, 23, 26, 29, 31, 32, 34, 36, 44, 46, 50, 52, 58, 59, 62, 64, 68, 72, 73, 79, 88, 89, 92, 98, 99, 100, 104, 116, 117, 118, 121, 122, 124, 128, 134, 136, 137, 139, 143, 144, 146, 153, 158, 162, 169, 173, 176, 178, 184, 187, 196, 198, 199, 200, 207, 208, 211, 221, 223, 226, 232, 234, 236, 239, 242, 244, 248, 253, 256, 261, 268
OFFSET
1,2
COMMENTS
Discriminant 257.
16*a(n) has the form z^2 - 257*y^2, where z = 8*x+9*y. [Bruno Berselli, Jun 20 2014]
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
maxTerm = 300; m0 = 10; dm = 10; Clear[f]; f[m_] := f[m] = Table[4*x^2 + 9 x*y - 11*y^2 , {x, -m, m}, {y, -m, m}] // Flatten // Union // Select[#, 0 <= # <= maxTerm&]&; f[m0]; f[m = m0]; While[f[m] != f[m - dm], m = m + dm]; f[m] (* Jean-François Alcover, Jun 04 2014 *) (* Brute force search, so not guaranteed to find all solutions, I believe. - N. J. A. Sloane, Jun 05 2014 *)
Reap[For[n = 0, n <= 30, n++,
If[Reduce[4*x^2 + 9*x*y - 11*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]] (* Better program, not brute force, but slow. Confirms the terms up through 29. - N. J. A. Sloane, Jun 05 2014 *)
CROSSREFS
Primes: A141168.
Sequence in context: A137288 A247524 A116443 * A236206 A078649 A161607
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 02 2014
STATUS
approved